PREREQUISITES FOR AFFECTIVE SIGNAL PROCESSING (ASP) – PART II

Egon L. van den Broek, Joris H. Janssen, Jennifer A. Healey, Marjolein D. van der Zwaag

Abstract

Last year, in van den Broek et al. (2009a), a start was made with defining prerequisites for affective signal processing (ASP). Four prerequisites were identified: validation (e.g., mapping of constructs on signals), triangulation, a physiology-driven approach, and contributions of the signal processing community. In parallel with this paper, in van den Broek et al. (2010) another set of two prerequisites is presented: integration of biosignals and physical characteristic. This paper continues this quest and defines two additional prerequisites: identification of users and theoretical specification. In addition, the second part of a review on the classification of emotions through ASP is presented; the first part can be found in van den Broek et al. (2009a).

References

  1. Berzal, F., Cubero, J.-C., Sánchez, D., and Serrano, J. M. (2004). ART: A hybrid classification model. Machine Learning, 54(1):67-.
  2. Cacioppo, J. and Tassinary, L. (1990). Inferring psychological significance from physiological signals. American Psychologist, 45(1):16-28.
  3. Chanel, G., Kierkels, J. J. M., Soleymani, M., and Pun, T. (2009). Short-term emotion assessment in a recall paradigm. International Journal of Human-Computer Studies, 67(8):607-627.
  4. Cheng, B. and Liu, G. (2008). Emotion recognition from surface EMG signal using wavelet transform and neural network. In Proceedings of The 2nd International Conference on Bioinformatics and Biomedical Engineering (ICBBE), pages 1363-1366, Shanghai, China. Piscataway, NJ, USA: IEEE Press.
  5. Choi, A. and Woo, W. (2005). Physiological sensing and feature extraction for emotion recognition by exploiting acupuncture spots. Lecture Notes in Computer Science (Affective Computing and Intelligent Interaction), 3784:590-597.
  6. Gamboa, H., Silva, F., Silva, H., and Falca˜o, R. (2009). PLUX - Biosignals Acquisition and Processing. URL: http://www.plux.info [Last accessed on November 02, 2009].
  7. Gunes, H. and Piccardi, M. (2009). Automatic temporal segment detection and affect recognition from face and body display. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 39(1):64-84.
  8. Ha°kansson, J. and Montgomery, H. (2003). Empathy as an interpersonal phenomenon. Journal of Social and Personal Relationships, 20(3):267-284.
  9. Healey, J. A. (2009). Affect detection in the real world: Recording and processing physiological signals. In Proceedings of the IEEE 3rd International Conference on Affective Computing and Intelligent Interaction, ACII, volume 1, pages 729-734, Amsterdam, The Netherlands. IEEE Press.
  10. Healey, J. A. and Picard, R. W. (2005). Detecting stress during real-world driving tasks using physiological sensors. IEEE Transactions on Intelligent Transportation Systems, 6(2):156-166.
  11. Janssen, J. H., van den Broek, E. L., and Westerink, J. H. D. M. (2009). Personalized affective music player. In Proceedings of the IEEE 3rd International Conference on Affective Computing and Intelligent Interaction, ACII, volume 1, pages 472-477, Amsterdam, The Netherlands. IEEE Press.
  12. Jones, C. M. and Troen, T. (2007). Biometric valence and arousal recognition. In Thomas, B. H., editor, Proceedings of the Australasian Computer-Human Interaction Conference (OzCHI), pages 191-194, Adelaide, Australia.
  13. Kim, J. (2007). Bimodal emotion recognition using speech and physiological changes, chapter 15, pages 265-280. Vienna, Austria: I-Tech Education and Publishing.
  14. Kim, J., André, E., Rehm, M., Vogt, T., and Wagner, J. (2005). Integrating information from speech and physiological signals to achieve emotional sensitivity. In Proceedings of the 9th European Conference on Speech Communication and Technology, pages 809-812, Lisboa, Portugal. Lisboa, Portugal: L2F - Spoken Language Systems Laboratory.
  15. Kim, K. H., Bang, S. W., and Kim, S. R. (2002). Development of person-independent emotion recognition system based on multiple physiological signals. In Proceedings of the Second Joint EMBS-BMES Conference, volume 1: Bioengineering - Integrative Methodologies, New Technologies, pages 50-51, Houston, Texas, USA.
  16. Kim, K. H., Bang, S. W., and Kim, S. R. (2004). Emotion recognition system using short-term monitoring of physiological signals. Medical & Biological Engineering & Computing, 42(3):419-427.
  17. Krohne, H. W., Pieper, M., Knoll, N., and Breimer, N. (2002). The cognitive regulation of emotions: The role of success versus failure experience and coping dispositions. Cognition & Emotion, 16(2):217-243.
  18. Kuncheva, L. I. (2002). A theoretical study on six classifier fusion techniques. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(2):281-286.
  19. Lam, L. and Suen, C. Y. (1995). Optimal combinations of pattern classifiers. Pattern Recognition Letters, 16(9):945-954.
  20. Lichtenstein, A., Oehme, A., Kupschick, S., and Jürgensohn, T. (2008). Comparing two emotion models for deriving affective states from physiological data. Lecture Notes in Computer Science (Affect and Emotion in Human-Computer Interaction), 4868:35-50.
  21. Lisetti, C. L. and Nasoz, F. (2002). MAUI: a multimodal affective user interface. In Proceedings of the tenth ACM international conference on Multimedia, pages 161-170, Juan les Pins, France. New York, NY, USA: ACM Press.
  22. Lisetti, C. L. and Nasoz, F. (2005). Affective intelligent car interfaces with emotion recognition. In Proceedings of 11th International Conference on Human-Computer Interaction, pages [on cd-rom], Las Vegas, Nevada, USA. Mahwah, NJ, USA: Lawrence Erlbaum Associates, Inc.
  23. Neisser, U. (1963). The imitation of man by machine - the view that machines will think as man does reveals misunderstanding of the nature of human thought. Science, 139(3551):193-197.
  24. Picard, R. W. (1997). Affective Computing. Boston, MA, USA: MIT Press.
  25. Picard, R. W. and Goodwin, M. (2008). Developing innovative technology for future personalized autism research and treatment. Autism Advocate, 50(1):32-39.
  26. Picard, R. W., Vyzas, E., and Healey, J. (2001). Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(10):1175-1191.
  27. Rainville, P., Bechara, A., Naqvi, N., and Damasio, A. R. (2006). Basic emotions are associated with distinct patterns of cardiorespiratory activity. International Journal of Psychophysiology, 61(1):5-18.
  28. Rani, P., Sarkar, N., Smith, C., and Kirby, L. (2004). Anxiety detecting robotic systems - towards implicit humanrobot collaboration. Robotica, 22(1):85-95.
  29. Rogers, M. (2003). The role of criminal profiling in the computer forensics process. Computers & Security, 22(4):292-298.
  30. Schuller, B., Rigoll, G., and Lang, M. (2004). Speech emotion recognition combining acoustic features and linguistic information in a hybrid support vector machine - belief network architecture. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 7804), volume 1, pages I-577-580, Montreal, QC, Canada.
  31. Sternbach, R. A. and Tursky, B. (1965). Ethnic differences among housewives in psychophysical and skin potential responses to electric shock. Psychophysiology, 1(3):241- 246.
  32. van den Broek, E. L., Janssen, J. H., van der Zwaag, M. D., and Healey, J. A. (2010). Prerequisits for Affective Signal Processing (ASP) - Part III. In Biosignals 2010: Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, page [this volume], Valencia - Spain.
  33. van den Broek, E. L., Janssen, J. H., Westerink, J. H. D. M., and Healey, J. A. (2009a). Prerequisits for Affective Signal Processing (ASP). In Encarnac¸a˜o, P. and Veloso, A., editors, Biosignals 2009: Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, pages 426-433, Porto - Portugal.
  34. Van den Broek, E. L. and Westerink, J. H. D. M. (2009). Considerations for emotion-aware consumer products. Applied Ergonomics, 40(6):1055-1064.
  35. Ververidis, D. and Kotropoulos, C. (2006). Emotional speech recognition: Resources, features, and methods. Speech Communication, 48(9):1162-1181.
  36. Yang, Y.-H., Lin, Y.-C., Su, Y.-F., and Chen, H. H. (2007). Music emotion classification: A regression approach. In Proceedings of the IEEE International Conference on Multimedia and Expo, pages 208-211, Beijing, China. Piscataway, NJ, USA: IEEE, Inc.
Download


Paper Citation


in Harvard Style

L. van den Broek E., H. Janssen J., A. Healey J. and D. van der Zwaag M. (2010). PREREQUISITES FOR AFFECTIVE SIGNAL PROCESSING (ASP) – PART II . In Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010) ISBN 978-989-674-018-4, pages 188-193. DOI: 10.5220/0002696601880193


in Bibtex Style

@conference{biosignals10,
author={Egon L. van den Broek and Joris H. Janssen and Jennifer A. Healey and Marjolein D. van der Zwaag},
title={PREREQUISITES FOR AFFECTIVE SIGNAL PROCESSING (ASP) – PART II},
booktitle={Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)},
year={2010},
pages={188-193},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002696601880193},
isbn={978-989-674-018-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)
TI - PREREQUISITES FOR AFFECTIVE SIGNAL PROCESSING (ASP) – PART II
SN - 978-989-674-018-4
AU - L. van den Broek E.
AU - H. Janssen J.
AU - A. Healey J.
AU - D. van der Zwaag M.
PY - 2010
SP - 188
EP - 193
DO - 10.5220/0002696601880193