SYNTHETIC IRIS IMAGES FROM IRIS PATTERNS BY MEANS OF EVOLUTIONARY STRATEGIES - How to Deceive a Biometric System based on Iris Recognition

Alberto de Santos Sierra, Javier Guerra Casanova, Carmen Sánchez Ávila, Vicente Jara Vera

Abstract

Synthetic Biometric is emerging nowadays as a new research field in biometrics. An artificial iris tissue or a synthetic fingerprint could compromise the security, allowing a non-registered individual to enter the system. However, inverse biometric can also improve current identification systems, enhancing not only its strength against fake-based attacks, but also by replicating unavailable or corrupted data, due to a bad acquisition, for instance. The methods proposed in this document aim to provide a procedure to create a synthetic iris tissue from a stored biometric template, so that a non-registered user could access the system under a registered identity. These algorithms will come out with the result that synthetic sample could be so similar to original as desired.

References

  1. Back, T., Fogel, D. B., and Michalewicz, Z. (2000a). Evolutionary Computation 1: Basic Algorithms and Operators. Taylor & Francis, Bristol, 1st edition.
  2. Back, T., Fogel, D. B., and Michalewicz, Z. (2000b). Evolutionary Computation 2: Advanced Algorithms and Operators. Taylor & Francis, Bristol, 1st edition.
  3. Boles, W. and Boashash, B. (1998). A human identification technique using images of the iris and wavelet transform. In IEEE Trans. Signal Processing, volume 46, page 11851188.
  4. Capelli, R., Lumini, A., Maio, D., and Maltoni, D. (2006). Can fingerprints be reconstructed from iso templates? In Proc. International Conference on Control, Automation, Robotics and Vision (ICARCV2006).
  5. Chun, C. N. and Chung, R. (2004). Iris recognition for palm-top application. In International Conference on Biometric Authentication (ICBA 2004), volume 3072, pages 426-433. Springer-Verlag.
  6. Cook, P. R. (2002). Real Sound Synthesis for Interactive Applications. AK. Peters, 1st edition.
  7. Cui, J., Wang, Y., Huang, J., Tan, T., Sun, Z., and Ma, L. (2004). An iris image synthesis method based on pca and super-resolution. In Proc. Int. Conf. on Pattern Recognition.
  8. Daugman, J. (1993). High confidence visual recognition of persons by a test of statistical independence. In IEEE Transactions on Pattern Analysis and Machine Intelligence, volume 15.
  9. Daugman, J. (2004). How iris recognition works. In IEEE Transactions on Circuits and Systems For Video Technology, volume 14.
  10. de Santos-Sierra, A., Sánchez-Í vila, C., and SánchezReíllo, R. (2007). Sistema de identificaci ón biométrica mediante patrón de iris utilizando operadores morfológicos y representación. In Congreso Iberoamericano de Seguridad Informática (CIBSI2007), pages 427-434.
  11. Eiben, A. E. and Smith, J. E. (2003). Introduction to Evolutionary Computing. Springer, Berlin.
  12. González, R. C., Woods, R. E., and Eddins, S. L. (2004). Digital Image Processing. Prentice All, 2nd edition.
  13. Guyon, I. (1996). Handwriting synthesis from handwritten glyphs. In Proc. 5th Int. Workshop on Frontiers of Handwriting Recognition, page 309312.
  14. Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolutionary Programs. Springer, Berlin, 3rd edition.
  15. Sánchez-Í vila, C. and Sánchez-Reíllo, R. (2002). Irisbased biometric recognition using dyadic wavelet transform. In IEEE Aerospace and Electronic Systems Magazine, pages 3-6.
  16. Schwefel, H. P. (1995). Evolution and Optimum Seeking. Wiley, New York.
  17. Yanushkevich, S. N. (2006). Synthetic biometrics: A survey. In International Joint Conference on Nueral Networks, pages 676-683.
  18. Yanushkevich, S. N., Wang, P. S. P., and Gavrilova, M. L. (2007). Image Pattern Recognition: Synthesis and Analysis in Biometrics. Imperial College Press.
Download


Paper Citation


in Harvard Style

de Santos Sierra A., Guerra Casanova J., Sánchez Ávila C. and Jara Vera V. (2010). SYNTHETIC IRIS IMAGES FROM IRIS PATTERNS BY MEANS OF EVOLUTIONARY STRATEGIES - How to Deceive a Biometric System based on Iris Recognition . In Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010) ISBN 978-989-674-018-4, pages 194-201. DOI: 10.5220/0002706601940201


in Bibtex Style

@conference{biosignals10,
author={Alberto de Santos Sierra and Javier Guerra Casanova and Carmen Sánchez Ávila and Vicente Jara Vera},
title={SYNTHETIC IRIS IMAGES FROM IRIS PATTERNS BY MEANS OF EVOLUTIONARY STRATEGIES - How to Deceive a Biometric System based on Iris Recognition},
booktitle={Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)},
year={2010},
pages={194-201},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002706601940201},
isbn={978-989-674-018-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)
TI - SYNTHETIC IRIS IMAGES FROM IRIS PATTERNS BY MEANS OF EVOLUTIONARY STRATEGIES - How to Deceive a Biometric System based on Iris Recognition
SN - 978-989-674-018-4
AU - de Santos Sierra A.
AU - Guerra Casanova J.
AU - Sánchez Ávila C.
AU - Jara Vera V.
PY - 2010
SP - 194
EP - 201
DO - 10.5220/0002706601940201