MODELING COMPLEXITY OF PHYSIOLOGICAL TIME SERIES IN-SILICO

Jesse Berwald, Tomáš Gedeon, Konstantin Mischaikow

Abstract

A free-running physiological system produces time series with complexity which has been correlated to the robustness and health of the system. The essential tool to study the link between the structure of the system and the complexity of the series it produces is a mathematical model that is capable of reproducing the statistical signatures of a physiological time series. We construct a model based on the neural structure of the hippocampus that reproduces detrended fluctuations and multiscale entropy complexity signatures of physiological time series. We study the dependence of these signatures on the length of the series and on the initial data.

References

  1. Costa, M., Goldberger, A. L., and Peng, C.-K. (2002). Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett., 89(6):068102.
  2. Costa, M., Goldberger, A. L., and Peng, C.-K. (2005). Multiscale entropy analysis of biological signals. Phys. Rev. E, 71(2):021906.
  3. Goldberger, A. L. (2006). Giles F. Filley Lecture. Complex Systems. Proc Am Thorac Soc, 3(6):467-471.
  4. Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., and Stanley, H. E. (2000). Physiobank, Physiotoolkit, and Physionet : Components of a New Research Resource for Complex Physiologic Signals. Circulation, 101(23):e215-220.
  5. Katok, A. and Hasselblatt, B. (1997). Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press.
  6. Peng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., and Goldberger, A. L. (1994). Mosaic organization of DNA nucleotides. Phys. Rev. E, 49(2):1685-1689.
  7. Peng, C.-K., Havlin, S., Stanley, H. E., and Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 5(1):82-87.
  8. Peng, C.-K., Yang, A. C.-C., and Goldberger, A. L. (2007). Statistical physics approach to categorize biologic signals: From heart rate dynamics to DNA sequences. Chaos: An Interdisciplinary Journal of Nonlinear Science, 17(1):015115.
  9. Richman, J. S. and Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol, 278(6):H2039-2049.
  10. Terman, D., Ahn, S., Wang, X., and Just, W. (2008). Reducing neuronal networks to discrete dynamics. Physica D: Nonlinear Phenomena, 237(3):324-338.
Download


Paper Citation


in Harvard Style

Berwald J., Gedeon T. and Mischaikow K. (2010). MODELING COMPLEXITY OF PHYSIOLOGICAL TIME SERIES IN-SILICO . In Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010) ISBN 978-989-674-018-4, pages 61-67. DOI: 10.5220/0002710300610067


in Bibtex Style

@conference{biosignals10,
author={Jesse Berwald and Tomáš Gedeon and Konstantin Mischaikow},
title={MODELING COMPLEXITY OF PHYSIOLOGICAL TIME SERIES IN-SILICO},
booktitle={Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)},
year={2010},
pages={61-67},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002710300610067},
isbn={978-989-674-018-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)
TI - MODELING COMPLEXITY OF PHYSIOLOGICAL TIME SERIES IN-SILICO
SN - 978-989-674-018-4
AU - Berwald J.
AU - Gedeon T.
AU - Mischaikow K.
PY - 2010
SP - 61
EP - 67
DO - 10.5220/0002710300610067