SINGLE CHANNEL SOURCE SEPARATION FOR CONVOLUTIVE MIXTURESWITH APPLICATION TO RESPIRATORY SOUNDS

A. K. Kattepur, F. Jin, F. Sattar

Abstract

In this paper, we attempt to extend single channel source separation techniques to the separation of respiratory sound (RS) and heart sounds (HS). This single channel recording is analyzed and shown to be a convolutive mixture model. After analyzing the reasons for failure of commonly used blind source separation algorithms, we evaluate the efficacy of non-negative matrix factorization (NMF) techniques for this application. Analysis on simulated single channel convolutive mixtures at various sensor positions has been performed. It indicates an average signal to interference ratio (SIR) improvement of greater than 10 dB for the optimal sensor locations. The corresponding range of received power has been also studied for reliable separation of RS and HS. Finally, the proposed model and the NMF separation performance are demostrated to work well on real RS recordings.

References

  1. Abrard, F. and Deville, Y. (2005). A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources. Signal Processing, 85(7):1389-1403.
  2. Bingham, E., Hyvrinen, A., and rinen, A. H. (2000). A fast fixed-point algorithm for independent component analysis of complex valued signals. Int. J. of Neural Systems, 10:1-8.
  3. Cardoso, J. F. and Souloumiac, A. (1993). Blind beamforming for non Gaussian signals. IEE Proceedings, 140(6):362-370.
  4. Charleston-Villalobos, S., Aljama-Corrales, A. T., and Gonzalez-Camarena, R. (2006). Analysis of simulated heart sounds by intrinsic mode functions. Proc. of 28th IEEE EMBS Conf., pages 2848-2851.
  5. Choi, S., Cichocki, A., Park, H. M., and Lee, S. Y. (2005). Blind source separation and independent component analysis: A review. Neural Information Processing - Letters and Reviews, 6(1):1-57.
  6. Cortés, S., Jané, R., Fiz, J. A., and Morera, J. (2005). Monitoring of wheeze duration during spontaneous respiration in asthmatic patients. Proc. 27th IEEE EMBS Conf.
  7. Gavriely, N. (1999). Automatic detection and analysis of breath sounds. Eur. Patent, (EP 0 951 867 A2).
  8. Jang, G.-J. and Lee, T.-W. (2003). A maximum likelihood approach to single-channel source separation. J. Machine Learning Res., 4:1365-1392.
  9. Kompis, M., Pasterkamp, H., Motai, Y., and Wodicka, G. R. (1998). Spatial representation of thoracic sounds. Proc. 20th IEEE EMBS Conf., pages 1661-1664.
  10. Lee, D. and Seung, H. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791.
  11. Lehrer, S. (2002). Understanding Lung Sounds. Philadelphia, PA: Saunders, Audio CD.
  12. MIT (1999). ICA Synthetic Benchmarks.
  13. Schmidt, M. N. and Mørup, M. (2006). Nonnegative matrix factor 2-D deconvolution for blind single channel source separation. In Int. Conf. on ICA and Signal Separation.
  14. Sovijärvi, A. R. A., Vanderschoot, J., and Eavis, J. R. (2000). Standardization of computerized respiratory sound analysis. European Respiratory Review, 10(77):585-649.
  15. Van der Veen, A. J. and Paulraj, A. (1996). An analytical constant modulus algorithm. IEEE Trans. Signal Processing, 44(5):1136-1155.
  16. Wilkins, R. L., Hodgkin, J. E., and Lopez, B. (2004). Fundamentals of Lung and Heart Sounds. Mosby, Audio CD.
  17. Zhao, Z. D. and Wang, Y. (2007). Analysis of diastolic murmurs for coronary artery diseasebased on hilbert huang transform. Proc. of Int. Conf. Machine Learning and Cybernetics, 6.
Download


Paper Citation


in Harvard Style

K. Kattepur A., Jin F. and Sattar F. (2010). SINGLE CHANNEL SOURCE SEPARATION FOR CONVOLUTIVE MIXTURESWITH APPLICATION TO RESPIRATORY SOUNDS . In Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010) ISBN 978-989-674-018-4, pages 220-224. DOI: 10.5220/0002712402200224


in Bibtex Style

@conference{biosignals10,
author={A. K. Kattepur and F. Jin and F. Sattar},
title={SINGLE CHANNEL SOURCE SEPARATION FOR CONVOLUTIVE MIXTURESWITH APPLICATION TO RESPIRATORY SOUNDS},
booktitle={Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)},
year={2010},
pages={220-224},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002712402200224},
isbn={978-989-674-018-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)
TI - SINGLE CHANNEL SOURCE SEPARATION FOR CONVOLUTIVE MIXTURESWITH APPLICATION TO RESPIRATORY SOUNDS
SN - 978-989-674-018-4
AU - K. Kattepur A.
AU - Jin F.
AU - Sattar F.
PY - 2010
SP - 220
EP - 224
DO - 10.5220/0002712402200224