NEURAL NETWORKS FOR THE MODELING OF CONCENTRATION OF CHEMICALS

José Torrecilla

Abstract

Recently, biosensors based on carbon nanotubes have gained considerable attention because of their novel properties such as their high surface area, electrical conductivity, good chemical stability and extremely high mechanical strength, among others. Nevertheless, to extract the most relevant information from those huge databases formed by the output of biosensors, statistical techniques are required. In the last decade, given the characteristics of neural networks (NNs), one of the most important and widely applied techniques is based on them. Here, successful applications of NNs as chemometric tools in different types of sensors are studied. In particular, describing the uses of NNs in the quantification of ionic liquids and hydrocarbons in their quaternary mixtures, lycopene and β-carotene in food samples (by sensors), poliphenolic compounds (hazardous materials in olive oil mill wastewater, by biosensors), glucose, uric and ascorbic acids in biological mixtures (by nanobiosensors). In general, the mean prediction error values are comparable with those values in other non portable commercial analytical equipment.

References

  1. A. Gutés, F. Céspedes, S. Alegret, M. del Valle, Biosens. Bioelectron. 20, 1668 (2005).
  2. A. Lovanov, L. Borisov, S. Gordon, R. Greene, T. Leathers, A. Reshetilov, Biosens. Bioelectron. 16, 1001 (2001).
  3. B. Schoefs. Trends Food Sci. Technol. 13, 361 (2002).
  4. C. Ziegler, A. Harsch, W. Goepel, Sens. Actuators BChem. 65, 160, (2000).
  5. D. Bicanic, M. Anese, S. Luterotti, D. Dadarlat, J. Gibkes, M. Lubbers, Rev. Sci. Instrum., Part 2, 74, 687 (2003).
  6. H. Cai, C. Xu, P. He, Y. Fang. J. Electroanal. Chem. 510, 78 (2001).
  7. H. Demuth, M. Beale, M. Hagan. Neural Network Toolbox For Use with MATLAB1; User's Guide, Version 4.0.6. Ninth printing Revised for Version 4.0.6 (Release 14SP3), 2005. The Math Works, Inc: Massachusetts, USA.
  8. J S. Torrecilla, M. Cámara, V. Fernández-Ruiz, G. Piera, J O. Caceres. J. Agric. Food Chem. 56, 6261 (2008).
  9. J. R. Schott. J. MultiVar. Anal. 97, 827 (2006).
  10. J. S. Torrecilla, A. Fernández, J. García, F. Rodríguez, Ind. Eng. Chem. Res. 46, 3787 (2007).
  11. J. S. Torrecilla, E. Rojo, J. García, M. Oliet, F. Rodríguez. Ind. Eng. Chem. Res. 48, 4998 (2009).
  12. J. S. Torrecilla, M. L. Mena, P. Yáñez-Sedeño, J. García, J. Agric. Food Chem. 55, 7418 (2007).
  13. J. S. Torrecilla, M. L. Mena, P. Yáñez-Sedeño, J. García, J. Chemometr. 22, 46, (2008b).
  14. L. C. J. Clark, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgey. Annals of the New York Academy of Sciences 102, 29 (1962).
  15. M. Mena, P. Yañez-Sedeño, J. Pingarrón, Anal. Biochem. 336, 20 (2005).
  16. M. Trojanowick, Electroanal. 14, 1311 (2002).
  17. N. V. Plechkova, K. R. Seddon. Chem. Soc. Rev. 37, 123 (2008).
  18. S. Campuzano, R. Galvez, M. Pedrero, F. Manuel de Villena, J. Pingarrón, J. Electroanal. Chem. 526, 92 (2002).
  19. X. Wang, K. K. Paliwal. Pattern Recognit. 36, 2429 (2003).
Download


Paper Citation


in Harvard Style

Torrecilla J. (2010). NEURAL NETWORKS FOR THE MODELING OF CONCENTRATION OF CHEMICALS . In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-674-021-4, pages 580-584. DOI: 10.5220/0002721605800584


in Bibtex Style

@conference{icaart10,
author={José Torrecilla},
title={NEURAL NETWORKS FOR THE MODELING OF CONCENTRATION OF CHEMICALS},
booktitle={Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2010},
pages={580-584},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002721605800584},
isbn={978-989-674-021-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - NEURAL NETWORKS FOR THE MODELING OF CONCENTRATION OF CHEMICALS
SN - 978-989-674-021-4
AU - Torrecilla J.
PY - 2010
SP - 580
EP - 584
DO - 10.5220/0002721605800584