SPCD - SPATIAL COLOR DISTRIBUTION DESCRIPTOR - A Fuzzy Rule based Compact Composite Descriptor Appropriate for Hand Drawn Color Sketches Retrieval

Savvas A. Chatzichristofis, Yiannis S. Boutalis, Mathias Lux

Abstract

In this paper, a new low level feature suitable for Hand Drawn Color Sketches retrieval is presented. The proposed feature structure combines color and spatial color distribution information. The combination of these two features in one vector classifies the proposed descriptor to the family of Composite Descriptors. In order to extract the color information, a fuzzy system is being used, which is mapping the number of colors that are included in the image into a custom palette of 8 colors. The way by which the vector of the proposed descriptor is being formed, describes the color spatial information contained in images. To be applicable in the design of large image databases, the proposed descriptor is compact, requiring only 48 bytes per image. Experiments demonstrate the effectiveness of the proposed technique.

References

  1. Chatzichristofis, S. and Boutalis, Y. (2007). A hybrid scheme for fast and accurate image retrieval based on color descriptors. In IASTED International Conference on Artificial Intelligence and Soft Computing.
  2. Chatzichristofis, S. and Boutalis, Y. (2008a). Cedd: Color and edge directivity descriptor: A compact descriptor Chatzichristofis, S. and Boutalis, Y. (2008b). Fcth: Fuzzy color and texture histogram-a low level feature for accurate image retrieval. In Image Analysis for Multimedia Interactive Services, 2008. WIAMIS'08. Ninth International Workshop on, pages 191-196.
  3. Chatzichristofis, S. and Boutalis, Y. (2009). Content based medical image indexing and retrieval using a fuzzy compact composite descriptor. In Proceedings of the 6th IASTED International Conference, volume 643, pages 1-6.
  4. Chatzichristofis, S., Boutalis, Y., and Lux, M. (2009). Img(rummager): An interactive content based image retrieval system. pages 151-153. 2nd International Workshop on Similarity Search and Applications (SISAP).
  5. Cinque, L., Ciocca, G., Levialdi, S., Pellicano, A., and Schettini, R. (2001). Color-based image retrieval using spatial-chromatic histograms. Image and Vision Computing, 19(13):979-986.
  6. Datta, R., Joshi, D., Li, J., and Wang, J. (2008). Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys, 40(2):160.
  7. Huang, J. (1997). Image indexing using color correlograms. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, page 762768.
  8. Jacobs, C., Finkelstein, A., and Salesin, D. (1995). Fast multiresolution image querying. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pages 277-286. ACM New York, NY, USA.
  9. Kasutani, E. and Yamada, A. (2001). The mpeg-7 color layout descriptor: a compact image featuredescription for high-speed image/video segment retrieval. In Image Processing, 2001. Proceedings. 2001 International Conference on, volume 1.
  10. Konstantinidis, K., Gasteratos, A., and Andreadis, I. (2005). Image retrieval based on fuzzy color histogram processing. Optics Communications, 248(4-6):375-386.
  11. Lim, S. and Lu, G. (2003). Spatial statistics for content based image retrieval. In Information Technology: Coding and Computing [Computers and Communications], 2003. Proceedings. ITCC 2003. International Conference on, pages 155-159.
  12. Lux, M. and Chatzichristofis, S. (2008). Lire: lucene image retrieval: an extensible java cbir library. ACM New York, NY, USA.
  13. Manjunath, B., Ohm, J., Vasudevan, V., and Yamada, A. (2001). Color and texture descriptors. IEEE Transactions on circuits and systems for video technology, 11(6):703-715.
  14. Pass, G., Zabih, R., and Miller, J. (1997). Comparing images using color coherence vectors. In Proceedings of the fourth ACM international conference on Multimedia, pages 65-73. ACM New York, NY, USA.
  15. Rao, A., Srihari, R., and Zhang, Z. (1999). Spatial color histograms for content-based image retrieval. In 11th IEEE International Conference on Tools with Artificial Intelligence, 1999. Proceedings, pages 183-186.
  16. Sun, J., Zhang, X., Cui, J., and Zhou, L. (2006). Image retrieval based on color distribution entropy. Pattern Recognition Letters, 27(10):1122-1126.
  17. Zagoris, K., Chatzichristofis, S., Papamrkos, N., and Boutalis, Y. (2009). Img(anaktisi): A web content based image retrieval system. pages 154-155. 2nd International Workshop on Similarity Search and Applications (SISAP) .
  18. Zimmermann, H. (1987). Fuzzy sets, decision making, and expert systems. Kluwer Academic Pub.
  19. Table 3: Fuzzy Interface Rules.
  20. Table 4: Fuzzy 8-bin Color System.
Download


Paper Citation


in Harvard Style

A. Chatzichristofis S., S. Boutalis Y. and Lux M. (2010). SPCD - SPATIAL COLOR DISTRIBUTION DESCRIPTOR - A Fuzzy Rule based Compact Composite Descriptor Appropriate for Hand Drawn Color Sketches Retrieval . In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-674-021-4, pages 58-63. DOI: 10.5220/0002725800580063


in Bibtex Style

@conference{icaart10,
author={Savvas A. Chatzichristofis and Yiannis S. Boutalis and Mathias Lux},
title={SPCD - SPATIAL COLOR DISTRIBUTION DESCRIPTOR - A Fuzzy Rule based Compact Composite Descriptor Appropriate for Hand Drawn Color Sketches Retrieval},
booktitle={Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2010},
pages={58-63},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002725800580063},
isbn={978-989-674-021-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - SPCD - SPATIAL COLOR DISTRIBUTION DESCRIPTOR - A Fuzzy Rule based Compact Composite Descriptor Appropriate for Hand Drawn Color Sketches Retrieval
SN - 978-989-674-021-4
AU - A. Chatzichristofis S.
AU - S. Boutalis Y.
AU - Lux M.
PY - 2010
SP - 58
EP - 63
DO - 10.5220/0002725800580063