CODING BIOLOGICAL SYSTEMS IN A STOCHASTIC FRAMEWORK - The Case Study of Budding Yeast Cell Cycle

Alida Palmisano

Abstract

In biology, modelling is mainly grounded in mathematics, and specifically on ordinary differential equations (ODEs). Using programming languages originally thought to describe networks of computers that exchange information is a complementary and emergent approach to analyze the dynamics of biological networks. In this work, we focus on the process algebra language called BlenX and we show that it is possible to easily reuse ODE models within this framework. In particular we focus on a well characterized biological network: the cell cycle of the budding yeast. This system has been studied in great details in the deterministic framework and data about a lot of mutants are available for the chosen model. It is interesting to note that the experimental phenotypic characterization of some mutants cannot be explained by the deterministic solution of the model, so in this work we propose a translation of the model in the stochastic framework in order to be able to verify if the inconsistencies are due to the noise that is affecting the system.

References

  1. Arkin, A. and Rao, C. (2003). Stochastic chemical kinetics and the quasi-steady-state assumption: application to the gillespie algorithm. Journal of Chemical Physics, 118(11):4999-5010.
  2. Cardelli, L. (2005). In Proc. of CMSB 2004, volume 3082, pages 257-278. LNCS.
  3. Chen, K., Calzone, L., Csikasz-Nagy, A., Cross, F., Novak, B., and Tyson, J. (2004a). Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell, 15(3841-3862).
  4. Kar, S., Baumann, W. T., Paul, M. R., and Tyson, J. J. (2009). Exploring the roles of noise in the eukaryotic cell cycle. Proceedings of the National Academy of Sciences, 106(16):6471-6476.
  5. Lecca, P. and Priami, C. (2007). In Proc. of BioConcur 2003, volume 180, pages 51-63. ENTCS.
  6. McAdams, H. H. and Arkin, A. (1997). Stochastic mechanisms in gene expression. Proc Natl Acad Sci U S A, 94(3):814-9.
  7. Mura, I. (2008). Technical Report TR-12-2008, CoSBi.
  8. Mura, I. and Csikasz-Nagy, A. (2008a). Stochastic petri net extension of a yeast cell cycle model. J Theor Biol, 254(4):850-60.
  9. Mura, I. and Csikasz-Nagy, A. (2008b). Stochastic Petri Net extension of a yeast cell cycle model. Journal of Theoretical Biology.
  10. Nasmyth, K. (1996). At the heart of the budding yeast cell cycle. Trends Genet, 12(10):405-12.
  11. Nurse, P. (2008). Life, logic and information. Nature, 454(7203):424-6.
  12. Palmisano, A., Mura, I., and Priami, C. (2009). From ODEs to language-based, executable models of biological systems. In Proceedings of Pacific Symposium on Biocomputing 2009.
  13. Panning, T. D., Watson, L. T., Allen, N. A., Chen, K. C., Shaffer, C. A., and Tyson, J. J. (2008). Deterministic parallel global parameter estimation for a model of the budding yeast cell cycle. J. of Global Optimization, 40(4):719-738.
  14. . Priami, C. and Quaglia, P. (2005). Operational patterns in [Online; accessed August-2009]. beta-binders. T. Comp. Sys. Biology, 1:50-65.
  15. Priami, C. (2009). Algorithmic systems biology. Commun. ACM, 52(5):80-88.
  16. Ciliberto, A., Capuani, F., and Tyson, J. J. (2007). Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation. PLoS Comput Biol, 3(3):e45.
  17. Ciocchetta, F. and Hillston, J. (2007). In Proc. of FBTC 2007. ENTCS.
  18. Csikasz-Nagy, A. (2009). Computational systems biology of the cell cycle. Brief Bioinform, 10(4):424-34.
  19. Danos, V. and Krivine, J. (2004). In Proc. of CONCUR 2004, volume 3170, pages 292-307. LNCS.
  20. Danos, V. and Laneve, C. (2004). Formal molecular biology. Theoretical Computer Science, 325(1):69-110.
  21. Dematté, L., Priami, C., and Romanel, A. (2008). The Beta Workbench: a computational tool to study the dynamics of biological systems. Briefings in Bioinformatics.
  22. Dematté, L., Priami, C., and Romanel, A. (2008). The BlenX Language: A Tutorial. In LNCS, editor, SFM 2008, pages 313-365. Springer-Verlag.
  23. Fisher, J. and Henzinger, T. (2007). Executable cell biology. Nature Biotechnology, 25(11):1239-1249.
  24. Gillespie, D. (1977). Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry, 81(25):2340-2361.
  25. Priami, C., Regev, A., Shapiro, E., and Silverman, W. (2001). Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inform. Process. Lett., 80(1):25-31.
  26. Regev, A., Panina, E., Silverman, W., Cardelli, L., and Shapiro, E. (2004). Bioambients: an abstraction for biological compartments. Theoretical Computer Science, 325(1):141-167.
  27. Regev, A. and Shapiro, E. (2002). Cells as computation. Nature, 419:353-.
  28. Sabouri-Ghomi, M., Ciliberto, A., Kar, S., Novak, B., and Tyson, J. (2007). Antagonism and bistability in protein interaction networks. J. Theor. Biol., 250(1):209- 218.
  29. Steuer, R. (2004). Effects of stochasticity in models of the cell cycle: from quantized cycle times to noiseinduced oscillations. Journal of Theoretical Biology, 228(3):293-301.
Download


Paper Citation


in Harvard Style

Palmisano A. (2010). CODING BIOLOGICAL SYSTEMS IN A STOCHASTIC FRAMEWORK - The Case Study of Budding Yeast Cell Cycle . In Proceedings of the First International Conference on Bioinformatics - Volume 1: BIOINFORMATICS, (BIOSTEC 2010) ISBN 978-989-674-019-1, pages 153-159. DOI: 10.5220/0002739601530159


in Bibtex Style

@conference{bioinformatics10,
author={Alida Palmisano},
title={CODING BIOLOGICAL SYSTEMS IN A STOCHASTIC FRAMEWORK - The Case Study of Budding Yeast Cell Cycle},
booktitle={Proceedings of the First International Conference on Bioinformatics - Volume 1: BIOINFORMATICS, (BIOSTEC 2010)},
year={2010},
pages={153-159},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002739601530159},
isbn={978-989-674-019-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Bioinformatics - Volume 1: BIOINFORMATICS, (BIOSTEC 2010)
TI - CODING BIOLOGICAL SYSTEMS IN A STOCHASTIC FRAMEWORK - The Case Study of Budding Yeast Cell Cycle
SN - 978-989-674-019-1
AU - Palmisano A.
PY - 2010
SP - 153
EP - 159
DO - 10.5220/0002739601530159