LSVF: LEAST SUGGESTED VALUE FIRST - A New Search Heuristic to Reduce the Amount of Backtracking Calls in CSP

Cleyton Mário de Oliveira Rodrigues, Eric Rommel Dantas Galvão, Ryan Ribeiro de Azevedo, Marcos Aurélio Almeida da Silva

2010

Abstract

Along the years, many researches in the Artificial Intelligence (AI) field seek for new algorithms to reduce drastically the amount of memory and time consumed for general searches in the family of constraint satisfaction problems. Normally, these improvements are reached with the use of some heuristics which either prune useless tree search branches or even “indicate” the path to reach the solution (many times, the optimal solution) more easily. Many heuristics were proposed in the literature, like Static/ Dynamic Highest Degree heuristic (SHD/DHD), Most Constraint Variable (MCV), Least Constraining Value (LCV), and while some can be used at the pre-processing time, others just at running time. In this paper we propose a new pre-processing search heuristic to reduce the amount of backtracking calls, namely the Least Suggested Value First (LSVF). LSVF emerges as a practical solution whenever the LCV can not distinguish how much a value is constrained. We present a pedagogical example to introduce the heuristics, realized through the general Constraint Logic Programming CHRv, as well as the preliminary results.

References

  1. Abdennadher, S., and Schütz, H., 1998. CHRv: A Flexible Query Language, In Proceedings of the Third International Conference on Flexible Query Answering Systems, p.1-14, May 13-15.
  2. Abdennadher, S., Frühwirth, T., and Meuss, H. 1999. Confluence and Semantics of Constraint Simplification Rules.Constraints 4, 2 (May. 1999), 133-165.
  3. Brailsford, S., Potts, C., and Smith, B. 1999. Constraint satisfaction problems: Algorithms and applications. European J. Operat. Res. 119, 557--581.
  4. Dechter, R. and Pearl, J. 1985. Generalized best-first search strategies and the optimality of A*. J. ACM 32, 3 (Jul. 1985), 505-536.
  5. Duck, G. J., Stuckey, P. J., De la Banda, M. G. and Holzbaur, C. 2004. The Refined Operational Semantics of Constraint Handling Rules. In Proceedings of the 20th International Conference on Logic Programming, B. Demoen and V. Lifschitz, Eds., 90-104.
  6. Fages, F., Rodrigues, C. M. O., and Martinez, T. 2008. Modular CHR with ask and tell. In T. Schrijvers, F. Raiser, and T. Frühwirth, editors, CHR 7808: Proc. 5th Workshop on Constraint Handling Rules, Hagenberg, Austria, pages 95-110, 2008. RISC Report Series 08-10, University of Linz, Austria.
  7. Frühwirth, T. 2008. Welcome to Constraint Handling Rules. In Constraint Handling Rules: Current Research Topics, T. Schrijvers and T. Frühwirth, Eds. Lecture Notes In Artificial Intelligence, vol. 5388. Springer-Verlag, Berlin, Heidelberg, 1--15.
  8. Gavanelli, M., Alberti, M., and Lamma, E. 2008. Integrating Abduction and Constraint Optimization in Constraint Handling Rules. In Proceeding of the 2008 Conference on ECAI 2008: 18th European Conference on Artificial intelligence. M. Ghallab, C. D. Spyropoulos, N. Fakotakis, and N. Avouris, Eds. Frontiers in Artificial Intelligence and Applications, vol. 178. IOS Press, Amsterdam, The Netherlands, 903-904.
  9. Robertson, N., Sanders, D. P., Seymour, P. D., and Thomas, R., 1997. The four colour theorem, J. Combin. Theory Ser. B., 2--44.
  10. Russel, S., Norvig, P., 2003 The book, Artificial Intelligence: A Modern Approach. New Jersey: Prentice-Hall, 2nd edition, 143--144.
  11. SWI-Prolog. 2008. Reference Manual. Avaliable in http://gollem.science.uva.nl/SWI-Prolog/Manual/ Contents.html. Last access in 15th September 2009.
  12. Vilain, M., Kautz, H. and Beek, P. van. 1989. Constraint propagation algorithms for temporal reasoning: A revised report. In D. S. Weld and J. de Kleer, editors, Readings in Qualitative Reasoning about Physical Systems, pages 373-381. Morgan Kaufmann.
  13. Wolf, A. 2005. Intelligent search strategies based on adaptive Constraint Handling Rules. Theory Pract. Log. Program. 5, 4-5 (Jul. 2005), 567-594.
Download


Paper Citation


in Harvard Style

Mário de Oliveira Rodrigues C., Rommel Dantas Galvão E., Ribeiro de Azevedo R. and Aurélio Almeida da Silva M. (2010). LSVF: LEAST SUGGESTED VALUE FIRST - A New Search Heuristic to Reduce the Amount of Backtracking Calls in CSP . In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-674-021-4, pages 416-421. DOI: 10.5220/0002761504160421


in Bibtex Style

@conference{icaart10,
author={Cleyton Mário de Oliveira Rodrigues and Eric Rommel Dantas Galvão and Ryan Ribeiro de Azevedo and Marcos Aurélio Almeida da Silva},
title={LSVF: LEAST SUGGESTED VALUE FIRST - A New Search Heuristic to Reduce the Amount of Backtracking Calls in CSP},
booktitle={Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2010},
pages={416-421},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002761504160421},
isbn={978-989-674-021-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - LSVF: LEAST SUGGESTED VALUE FIRST - A New Search Heuristic to Reduce the Amount of Backtracking Calls in CSP
SN - 978-989-674-021-4
AU - Mário de Oliveira Rodrigues C.
AU - Rommel Dantas Galvão E.
AU - Ribeiro de Azevedo R.
AU - Aurélio Almeida da Silva M.
PY - 2010
SP - 416
EP - 421
DO - 10.5220/0002761504160421