GRSK: A GENERALIST RECOMMENDER SYSTEM

I. Garcia, L. Sebastia, S. Pajares, E. Onaindia

Abstract

This paper describes the main characteristics of GRSK, a Generalist Recommender System Kernel. It is a RS based on the semantic description of the domain, which allows the system to work with any domain as long as the data of this domain can be defined through an ontology representation. GRSK uses several Basic Recommendation and Hybrid Techniques to obtain the recommended items. Through the GRSK configuration process, it is possible to select which techniques to use and to parameterize different aspects of the recommendation process, in order to adjust the GRSK behavior to the particular application domain. The experimental results will show that GRSK can be successfully used with different domains.

References

  1. Adomavicius G., Tuzhilin A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6):734-749.
  2. Anderson M., Ball M., Boley H., Greene S., Howse N., Lemire D., McGrath S. (2003). Racofi: Rule-applying collaborative filtering systems. In IEEE WIC COLA.
  3. Brozovsky L. (2006). Recommender system for a dating service. Master's thesis, KSI, MFF UK, Prague, Czech Republic.
  4. Burke R. (2007). The Adaptive Web, chapter Hybrid web recommender systems, pages 377-408. Springer Berlin / Heidelberg.
  5. Deshpande M., Karypis G. (2004). Item-based top-n recommendation algorithms. ACM Transactions on Information Systems, 22(1):143-177.
  6. Garcia I., Sebastia L., Onaindia E., Guzman C. (2009). A group recommender system for tourist activities. In International Conference on Electronic Commerce and Web Technologies (EC-Web).
  7. Lamere P., Green S. (2008). Project aura - recommendation for the rest of us. JavaOne.
  8. Lemire D., McGrath S. (2005). Implementing a ratingbased item-to-item recommender system in php/sql. D-01, Ondelette.com.
  9. Ogston E., Bakker A., van Steen M. (2006). On the value of random opinions in decentralized recommendation. In Distributed applications and interoperable systems (DAIS).
  10. Pazzani M.J. (1999). A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 13:393-408.
  11. Resnick P., Varian H. (1997). Recommender systems. Communications of the ACM, 1997, 40(3).
  12. Sebastia L., Garcia I., Onaindia E., Guzman C. (2009). eTourism: a tourist recommendation and planning application. International Journal on Artificial Intelligence Tools (WSPC-IJAIT), 18(5):717-738.
  13. Tao Li, Anand S.S. (2009). Exploiting domain knowledge by automated taxonomy generation in recommender systems. In EC-Web 2009, T. Di Noia and F. Buccafurri eds, LNCS 5692, pages 120-131. SpringerVerlag.
  14. van Setten M., Reitsma J., Ebben P. (2006). Duine toolkit - user manual. Technical report, Telematica Instituut.
Download


Paper Citation


in Harvard Style

Garcia I., Sebastia L., Pajares S. and Onaindia E. (2010). GRSK: A GENERALIST RECOMMENDER SYSTEM . In Proceedings of the 6th International Conference on Web Information Systems and Technology - Volume 1: WEBIST, ISBN 978-989-674-025-2, pages 211-218. DOI: 10.5220/0002779302110218


in Bibtex Style

@conference{webist10,
author={I. Garcia and L. Sebastia and S. Pajares and E. Onaindia},
title={GRSK: A GENERALIST RECOMMENDER SYSTEM},
booktitle={Proceedings of the 6th International Conference on Web Information Systems and Technology - Volume 1: WEBIST,},
year={2010},
pages={211-218},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002779302110218},
isbn={978-989-674-025-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Web Information Systems and Technology - Volume 1: WEBIST,
TI - GRSK: A GENERALIST RECOMMENDER SYSTEM
SN - 978-989-674-025-2
AU - Garcia I.
AU - Sebastia L.
AU - Pajares S.
AU - Onaindia E.
PY - 2010
SP - 211
EP - 218
DO - 10.5220/0002779302110218