COMPUTATIONALLY EFFICIENT SERIAL COMBINATION OF ROTATION-INVARIANT AND ROTATION COMPENSATING IRIS RECOGNITION ALGORITHMS

Mario Konrad, Herbert Stögner, Andreas Uhl, Peter Wild

Abstract

Rotation compensation is one of the computational bottlenecks in large scale iris-based identification schemes, since a significant amount of Hamming distance computations is required in a single match due to the necessary shifting of the iris codes to compensate for eye tilt. To cope with this problem, a serial classifier combination approach is proposed for iris-based identification, combining rotation-invariant pre-selection with a traditional rotation compensating iris code-based scheme. The primary aim, a reduction of computational complexity, can easily be met - at comparable recognition accuracy, the computational effort required is reduced to 20% or even less of the fully fledged iris code based scheme. As a by-product, the recognition accuracy is shown to be additionally improved in open-set scenarios.

References

  1. Daugman, J. (2004). How iris recognition works. IEEE Transactions on Circiuts and Systems for Video Technology, 14(1):21-30.
  2. Du, Y., Ives, R., Etter, D., and Welch, T. (2006). Use of one-dimensional iris signatures to rank iris pattern similarities. Optical Engineering, 45(3):037201-1 - 037201-10.
  3. Gentile, J. E., Ratha, N., and Connell, J. (2009). An efficient, two-stage iris recognition system. In Biometrics: Theory, Applications and Systems (BTAS'09), pages 1-5.
  4. Matschitsch, S., Stögner, H., Tschinder, M., and Uhl, A. (2008). Rotation-invariant iris recognition: boosting 1D spatial-domain signatures to 2D. In Filipe, J., Cetto, J., and Ferrier, J.-L., editors, ICINCO 2008: Proceedings of the 5th International Conference on Informatics in Control, Automation and Robotics, volume SPSMC, pages 232-235. INSTICC Press.
  5. Park, C.-H. and Lee, J.-J. (2006). Extracting and combining multimodal iris features. In Proceedings of the 1st IAPR International Conference on Biometrics (ICB'06), number 3832 in Lecture Notes on Computer Science, pages 389-396.
  6. Qui, X., Sun, Z., and Tan, T. (2007). Coarse iris classification by learned visual dictionary. In Proceedings of the 2nd IAPR/IEEE International Conference on Biometrics (ICB'07), number 4642 in Lecture Notes on Computer Science, pages 770-779.
  7. Ross, A., Nandakumar, K., and Jain, A. (2006). Handbook of Multibiometrics. Springer.
  8. Sun, Z., Wang, Y., Tan, T., and Cui, J. (2005). Improving iris recognition accuracy via cascaded classifiers. IEEE Transactions on Systems, Man and Cybernetics, 35(3):435-441.
  9. Uhl, A. and Wild, P. (2009). Parallel versus serial classifier combination for multibiometric hand-based identification. In Tistarelli, M. and Nixon, M., editors, Proceedings of the 3rd International Conference on Biometrics 2009 (ICB'09), volume 5558 of LNCS, pages 950-959. Springer Verlag.
  10. Vatsa, M., Singh, R., and Noore, A. (2005). Reducing the false rejection rate of iris recognition using textural and topological features. Int. Journal of Signal Processing, 2(2):66-72.
  11. Yu, L., Wang, K., and Zhang, D. (2006). A novel method for coarse iris classification. In Proceedings of the 1st IAPR International Conference on Biometrics (ICB'06), number 3832 in Lecture Notes on Computer Science, pages 404-410.
  12. Zhang, P.-F., Li, D.-S., and Wang, Q. (2004). A novel iris recognition method based on feature fusion. In Proceedings of the International Conference on Machine Learning and Cybernetics, pages 3661-3665.
Download


Paper Citation


in Harvard Style

Konrad M., Stögner H., Uhl A. and Wild P. (2010). COMPUTATIONALLY EFFICIENT SERIAL COMBINATION OF ROTATION-INVARIANT AND ROTATION COMPENSATING IRIS RECOGNITION ALGORITHMS . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-028-3, pages 85-90. DOI: 10.5220/0002821100850090


in Bibtex Style

@conference{visapp10,
author={Mario Konrad and Herbert Stögner and Andreas Uhl and Peter Wild},
title={COMPUTATIONALLY EFFICIENT SERIAL COMBINATION OF ROTATION-INVARIANT AND ROTATION COMPENSATING IRIS RECOGNITION ALGORITHMS},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={85-90},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002821100850090},
isbn={978-989-674-028-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010)
TI - COMPUTATIONALLY EFFICIENT SERIAL COMBINATION OF ROTATION-INVARIANT AND ROTATION COMPENSATING IRIS RECOGNITION ALGORITHMS
SN - 978-989-674-028-3
AU - Konrad M.
AU - Stögner H.
AU - Uhl A.
AU - Wild P.
PY - 2010
SP - 85
EP - 90
DO - 10.5220/0002821100850090