MANIPULATION OF PARAMETRIC SURFACES THROUGH A SIMPLE DEFORMATION ALGORITHM

L. H. You, H. Ugail, X. Y. You, E. Chaudhry, Jian J. Zhang

Abstract

In this paper, we present a novel but simple physics based method to manipulate parametric surfaces. This method can deal with local deformations with an arbitrarily complicated boundary shape. We firstly map a deformation region of a 3D surface to a circle on a 2D parametric plane. Then we derive an approximate analytical solution of a set of fourth order partial differential equations subjected to sculpting forces and the boundary conditions of the circle. With the obtained solution, we show how to create a deformed surface and how sculpting forces and the shape control parameters affect the shape of a deformed surface. Finally, we provide some examples to demonstrate the applications of our proposed method in surface manipulation.

References

  1. Fleming, B., 1999. 3D Modeling & Surfacing, Academic Press.
  2. Maestri, G., 1999. Digital Character Animation, Volume 1: Essential Techniques, New Riders Publishing.
  3. Barr, A. H., 1984. Global and Local Deformations of Solid Primitives, Proceedings of SIGGRAPH 7884 and Computer Graphics 18(3), 21-30.
  4. Sederberg, T.W., Parry, S.R., 1986. Free-Form Deformation of Solid Geometric Models, Proceedings of SIGGRAPH 7886 and Computer Graphics 20(4), 151-159.
  5. Coquillart, S., 1990. Extended free-form deformation: a sculpturing tool for 3D geometric modelling, In Computer Graphics (SIGGRAPH 7890 Proceedings) 24, 187-196.
  6. Coquillart, S., Jancene, P., 1991. Animated free-form deformation: An interactive animation technique, In Computer Graphics (SIGGRAPH 7891 Proceedings) 25, 23-26.
  7. Lamousin, H., Waggenspack, W., 1994. NURBS-based free-form deformation, IEEE Computer Graphics and Applications 14(6), 59-65.
  8. MacCracken, R., 1996. Free-from deformations with lattices of arbitrary topology, In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Applications (SIGGRAPH 96), 181-188.
  9. Hirota, G., Maheshwari, R., Lin, M.C., 2000. Fast volumepreserving free-form deformation using multi-level optimization, Computer-Aided Design 32(8), 499- 512(14).
  10. Feng, J., Nishita, T., Jin, X., Peng, Q., 2002. B-spline freeform deformation of polygonal object as trimmed Bézier surfaces, The Visual Computer 18, 493-510.
  11. Feng, J., Shao, J., Jin, X., Peng, Q., Forrest, A.R., 2006. Multiresolution free-form deformation with subdivision surface of arbitrary topology, The visual Computer 22(1), 28-42.
  12. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K., 1987. Elastically deformable models, Computer Graphics 21(4), 205-214.
  13. Terzopoulos, D., Fleischer, K., 1988. Deformable models, The Visual Computer 4, 306-331.
  14. Terzopoulos, D., Fleischer, K., 1988. Modeling inelastic deformation: viscoelasticity, plasticity, fracture, Computer Graphics 22(4), 269-278.
  15. Celniker, G., Gossard, D., 1991. Deformable curve and surface finite-elements for free-form shape design, Computer Graphics 25(4), 257-266.
  16. Güdükbay, U., Özgüç, B., 1994. Animation of deformable models, Computer-Aided Design 26(12), 868-875.
  17. Terzopoulos, D., Qin, H., 1994. Dynamic NURBS with geometric constraints for interactive sculpting, ACM Transactions on Graphics 13(2), 103-136.
  18. Qin, H., Terzopoulos, D., 1995. Dynamic NURBS swung surfaces for physical-based shape design, ComputerAided Design 27(2), 111-127.
  19. Qin, H., Terzopoulos, D., 1997. Triangular NURBS and their dynamic generations, Computer Aided Geometric Design 14, 325-347.
  20. Vassilev, T. I., 1997. Interactive sculpting with deformable nonuniform B-splines, Computer Graphics Forum 16, 191-199.
  21. Léon, J. C., Veron, P., 1997. Semiglobal deformation and correction of free-form surfaces using a mechanical alternative, The Visual Computer 13, 109-126.
  22. Guillet, S., Léon, J. C., 1998. Parametrically deformed free-form surfaces as part of a variational model, Computer-Aided Design 30(8), 621-630.
  23. Mandal, C., Qin, H., Vemuri, B.C., 2000. Dynamic modeling of butterfly subdivision surfaces, IEEE Transactions on Visualization and Computer Graphics 6(3), 265-287.
  24. McDonnell, K. T., Qin, H., 2007. A novel framework for physically based sculpting and animation of free-form solids, The Visual Computer 23(4), 285-296.
  25. Bloor, M. I. G., Wilson, M. J., 1989. Generating blend surfaces using partial differential equations, Computer-Aided Design 21(3), 165-171.
  26. Bloor, M. I. G., Wilson, M. J., 1990. Using partial differential equations to generate free-form surfaces, Computer-Aided Design 22(4), 202-212.
  27. Bloor, M. I. G., Wilson, M. J., 1996. Spectral approximations to PDE surfaces, Computer-Aided Design 28(2), 145-152.
  28. Bloor, M. I. G., Wilson, M. J., Mulligan, S. J., 2000. Generating blend surfaces using a perturbation method, Mathematical and Computer Modelling 31(1), 1-13.
  29. Ugail, H., Bloor, M. I. G., Wilson, M. J., 1999. Techniques for Interactive Design Using the PDE Method, ACM Transactions on Graphics 18(2), 195- 212.
  30. Kubiesa, S., Ugail, H., Wilson, M. J., 2004. Interactive design using higher order PDEs, The Visual Computer 20, 682-693.
  31. Ugail, H., 2004. Spine based shape parameterisation for PDE surfaces, Computing 72, 195-206.
  32. Monterde, J., Ugail, H., 2004. On harmonic and biharmonic Bézier surfaces, Computer Aided Geometric Design 21(7), 697-715.
  33. Ugail, H., 2006. Method of Trimming PDE Surfaces, Computers & Graphics 30(2), 225-232.
  34. Monterde, J., Ugail, H., 2006. A General 4th-Order PDE Method to Generate Bézier Surfaces from the Boundary, Computer Aided Geometric Design 23(2), 208-225.
  35. Ugail, H., 2007. Generalized Partial Differential Equations for Interactive Design, International Journal of Shape Modeling 13(2), 225-226.
  36. You, L. H., Zhang, J. J., 2003. Fast Generation of 3D Deformable Moving Surfaces, IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 33(4), 616-625.
  37. Zhang, J. J., You, L. H., 2004. Fast surface modelling using a 6th order PDE, Computer Graphics Forum 23(3), 311-320.
Download


Paper Citation


in Harvard Style

H. You L., Ugail H., Y. You X., Chaudhry E. and J. Zhang J. (2010). MANIPULATION OF PARAMETRIC SURFACES THROUGH A SIMPLE DEFORMATION ALGORITHM . In Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010) ISBN 978-989-674-026-9, pages 84-89. DOI: 10.5220/0002823100840089


in Bibtex Style

@conference{grapp10,
author={L. H. You and H. Ugail and X. Y. You and E. Chaudhry and Jian J. Zhang},
title={MANIPULATION OF PARAMETRIC SURFACES THROUGH A SIMPLE DEFORMATION ALGORITHM},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010)},
year={2010},
pages={84-89},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002823100840089},
isbn={978-989-674-026-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010)
TI - MANIPULATION OF PARAMETRIC SURFACES THROUGH A SIMPLE DEFORMATION ALGORITHM
SN - 978-989-674-026-9
AU - H. You L.
AU - Ugail H.
AU - Y. You X.
AU - Chaudhry E.
AU - J. Zhang J.
PY - 2010
SP - 84
EP - 89
DO - 10.5220/0002823100840089