DYNAMIC GLOBAL OPTIMIZATION FRAMEWORK FOR REAL-TIME TRACKING

João F. Henriques, Rui Caseiro, Jorge Batista

Abstract

Tracking is a crucial task in the context of visual surveillance. There are roughly three classes of trackers: the classical greedy algorithms (based on sequential modeling of targets, such as particle filters), Multiple Hypothesis Tracking (MHT) and its variants, and global optimizers (based on optimal matching algorithms from linear programming). We point out the shortcomings of all approaches, and set out to solve the only gaping deficiency of global optimization trackers, which is their inability to work with streamed video, in continual operation. We present an extension to the new Dynamic Hungarian Algorithm that achieves this effect, and show tracking results in such different conditions as the tracking of humans and vehicles, in different scenes, using the same set of parameters for our tracker.

References

  1. Ahuja, R. K. (2008). Network flows. PhD thesis, Massachusetts Institute of Technology, Cambridge.
  2. Betke, M., Hirsh, D. E., Bagchi, A., Hristov, N. I., Makris, N. C., and Kunz, T. H. (2007). Tracking large variable numbers of objects in clutter. Proceedings of the IEEE Computer Society June.
  3. Huang, C., Wu, B., and Nevatia, R. (2008). Robust object tracking by hierarchical association of detection responses. In Proceedings of the 10th European Conference on Computer Vision: Part II, page 801.
  4. Huang, T. and Russell, S. (1997). Object identification in a bayesian context. In International Joint Conference on Artificial Intelligence, volume 15, pages 1276-1283.
  5. Javed, O., Rasheed, Z., Shafique, K., and Shah, M. (2003). Tracking across multiple cameras with disjoint views. In Ninth IEEE International Conference on Computer Vision, 2003. Proceedings, pages 952-957.
  6. Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2:83-97.
  7. Li, K., Miller, E. D., Chen, M., Kanade, T., Weiss, L. E., and Campbell, P. G. (2008). Cell population tracking and lineage construction with spatiotemporal context. Medical Image Analysis, 12(5):546-566.
  8. Mills-Tettey, G. A., Stentz, A., and Dias, M. B. (2007). The Dynamic Hungarian Algorithm for the Assignment Problem with Changing Costs. Citeseer.
  9. Okuma, K., Taleghani, A., Freitas, N. D., Little, J. J., and Lowe, D. G. (2004). A boosted particle filter: Multitarget detection and tracking. Lecture Notes in Computer Science, pages 28-39.
  10. Palaio, H. and Batista, J. (2008). A region covariance embedded in a particle filter for multi-objects tracking.
  11. Porikli, F., Tuzel, O., and Meer, P. (2006). Covariance tracking using model update based on means on riemannian manifolds. Proc. IEEE Conf. on Computer Vision and Pattern Recognition.
  12. Reid, D. B. (1979). An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control, 24(6):843-854.
  13. Shafique, K. and Shah, M. (2005). A noniterative greedy algorithm for multiframe point correspondence. IEEE transactions on pattern analysis and machine intelligence, 27(1):51-65.
  14. Stauffer, C. (2003). Estimating tracking sources and sinks. In Computer Vision and Pattern Recognition Workshop, 2003. CVPRW'03. Conference on, volume 4.
  15. Taj, M., Maggio, E., and Cavallaro, A. (2007). Multifeature graph-based object tracking. Lecture Notes in Computer Science, 4122:190.
  16. Tuzel, O., Porikli, F., and Meer, P. (2008). Pedestrian detection via classification on riemannian manifolds. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1713-1727.
Download


Paper Citation


in Harvard Style

Henriques J., Caseiro R. and Batista J. (2010). DYNAMIC GLOBAL OPTIMIZATION FRAMEWORK FOR REAL-TIME TRACKING . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-028-3, pages 207-215. DOI: 10.5220/0002823502070215


in Bibtex Style

@conference{visapp10,
author={João F. Henriques and Rui Caseiro and Jorge Batista},
title={DYNAMIC GLOBAL OPTIMIZATION FRAMEWORK FOR REAL-TIME TRACKING},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={207-215},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002823502070215},
isbn={978-989-674-028-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010)
TI - DYNAMIC GLOBAL OPTIMIZATION FRAMEWORK FOR REAL-TIME TRACKING
SN - 978-989-674-028-3
AU - Henriques J.
AU - Caseiro R.
AU - Batista J.
PY - 2010
SP - 207
EP - 215
DO - 10.5220/0002823502070215