ON-LINE PLANAR AREA SEGMENTATION FROM SEQUENCE OF MONOCULAR MONOCHROME IMAGES FOR VISUAL NAVIGATION OF AUTONOMOUS ROBOT

Naoya Ohnishi, Yoshihiko Mochizuki, Atsushi Imiya, Tomoya Sakai

Abstract

We introduce an on-line segmentation of a planar area from a sequence of images for visual navigation of a robot. We assume that the robot moves autonomously in a man-made environment without any stored map in the memory or any markers in the environment. Since the robot moves in a man-made environment, we can assume that the robot workspace is a collection of spatial plane segments. The robot is needed to separate a ground plane from an image and/or images captured by imaging system mounted on the robot. The ground plane defines a collision-free space for navigation. We develop a strategy for computing the navigation direction using a hierarchical expression of plane segments in the workspace. The robot is required to extract a spatial hierarchy of plane segments from images. We propose an algorithm for plane segmentation using an optical flow field captured by an uncalibrated moving camera.

References

  1. Brox, T., Bruhn, A., and Weickert, J. (2006). tional motion segmentation with level sets. ECCV2006, 1:471-483.
  2. Chum, O., Werner, T., and Matas, J. (2005). Two-view geometry estimation unaffected by a dominant plane. CVPR05, 1:772-779.
  3. Fermin, I. and Imiya, A. (1997). Planar motion detection by randomized triangle matching. Pattern Recognition, 18:741-749.
  4. Fischler, M. A. and Bolles, R. C. (1981). Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM, 24:381-395.
  5. Imiya, A. and Fermin, I. (1999). Motion analysis by random sampling and voting process. CVIU, 73:309-328.
  6. Jones, S. D., Andresen, C., and Crowley, J. L. (1997). Appearance based processes for visual navigation. IEEE/RSJ International Conference on Intelligent Robots and Systems, 1:551-557.
  7. Kuipers, B. and Byun, Y.-T. (1991). A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Robotics and Autonomous Systems, 8:47-63.
  8. Murase, H. and Nayar, S. K. (1995). Visual learning and recognition of 3-d objects from appearance. IJCV, 14:5-24.
  9. N.Ohnishi and Imiya, A. (2005). Featureless robot navigation using optical flow. Connection Science, 17:23- 46.
  10. Ohnishi, N. and Imiya, A. (2006). Dominant plane detection from optical flow for robot navigation. Pattern Recognition Letters, 27:1009-1021.
  11. Ulrich, I. and Nourbakhsh, I. (2000). Appearancebased place recognition for topological localization. ICRA2000, 1:1023-1029.
  12. Vaina, L. M., Beardsley, S. A., and Rushton, S. K. (2004). Optic Flow and Beyond. Kluwer, Amsteldam.
  13. Wagner, T., Visser, U., and Herzog, O. (2004). Egocentric qualitative spatial knowledge representation for physical robots. Robotics and Autonomous Systems, 49:25- 42.
  14. Wang, J. Y. A. and Adelson, E. H. (1994). Representing moving images with layers. IEEE Trans. on Image Processing Special Issue: Image Sequence Compression, 3:625-638.
  15. Weiss, Y. (1997). Smoothness in layers: Motion segmentation using nonparametric mixture estimation. CVPR97, 1:520-527.
  16. Yang, A. Y., Rao, S., Wagner, A., and Ma, Y. (2005). Segmentation of a piece-wise planar scene from perspective images. CVPR05, 1:154-161.
  17. Young-Geun, K. and Hakil, K. (2004). Layered ground floor detection for vision-based mobile robot navigation. ICRA04, 1:13-18.
Download


Paper Citation


in Harvard Style

Ohnishi N., Mochizuki Y., Imiya A. and Sakai T. (2010). ON-LINE PLANAR AREA SEGMENTATION FROM SEQUENCE OF MONOCULAR MONOCHROME IMAGES FOR VISUAL NAVIGATION OF AUTONOMOUS ROBOT . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-028-3, pages 435-442. DOI: 10.5220/0002825404350442


in Bibtex Style

@conference{visapp10,
author={Naoya Ohnishi and Yoshihiko Mochizuki and Atsushi Imiya and Tomoya Sakai},
title={ON-LINE PLANAR AREA SEGMENTATION FROM SEQUENCE OF MONOCULAR MONOCHROME IMAGES FOR VISUAL NAVIGATION OF AUTONOMOUS ROBOT},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={435-442},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002825404350442},
isbn={978-989-674-028-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010)
TI - ON-LINE PLANAR AREA SEGMENTATION FROM SEQUENCE OF MONOCULAR MONOCHROME IMAGES FOR VISUAL NAVIGATION OF AUTONOMOUS ROBOT
SN - 978-989-674-028-3
AU - Ohnishi N.
AU - Mochizuki Y.
AU - Imiya A.
AU - Sakai T.
PY - 2010
SP - 435
EP - 442
DO - 10.5220/0002825404350442