A GEOMETRIC APPROACH TO CURVATURE ESTIMATION ON TRIANGULATED 3D SHAPES

Mohammed Mesmoudi, Leila De Floriani, Paola Magillo

Abstract

We present a geometric approach to define discrete normal, principal, Gaussian and mean curvatures, that we call Ccurvature. Our approach is based on the notion of concentrated curvature of a polygonal line and a simulation of rotation of the normal plane of the surface at a point. The advantages of our approach is its simplicity and its natural meaning. A comparison with widely-used discrete methods is presented.

References

  1. Akleman, E. and Chen, J. (2006). Practical polygonal mesh modeling with discrete gaussian-bonnet theorem. In Proceedings of Geometry, Modeling and Processing.
  2. Alboul, L., Echeverria, G., and Rodrigues, M. A. (2005). Discrete curvatures and gauss maps for polyhedral surfaces. In Workshop on Computational Geometry.
  3. Aleksandrov, P. (1957). Topologia combinatoria. Torino.
  4. Borrelli, V., Cazals, F., and Morvan, J.-M. (2003). On the angular defect of triangulations and the pointwise approximation of curvatures. Comput. Aided Geom. Des., 20(6):319-341.
  5. Do Carno, M. P. (1976). Differential Geometry of Curves and Surfaces. Prentice-Hall, Inc.
  6. Doss-Bachelet, C., Franc¸oise, J.-P., and Piquet, C. (2000). Géométrie différentielle. Ellipses.
  7. Gatzke, T. and Grimm, C. (2006). Estimating curvature on triangular meshes. International Journal of Shape Modeling, 12(1):1-29.
  8. Hahmann, S., Belyaev, A., Busé, L., Elber, G., Mourrain, B., and Roessl, C. (2007). Shape Interrogation. In Shape Analysis and Structuring, Mathematics and Visualization, pages 1-57. Springer.
  9. Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. (2003). Discrete differential-geometry operators for triangulated 2-manifolds. In Visualization and Mathematics III, pages 35-57. Springer-Verlag, Heidelberg.
  10. Surazhsky, T., Magid, E., Soldea, O., Elber, G., and Rivlin, E. (2003). A comparison of gaussian and mean curvatures estimation methods on triangular meshes. In Proceedings of Conference on Robotics and Automation, 2003., pages 739-743.
  11. Taubin, G. (1995). Estimating the tensor of curvature of a surface from a polyhedral approximation. In ICCV 7895: Proceedings of the Fifth International Conference on Computer Vision, page 902.
  12. Troyanov, M. (1986). Les surfaces euclidiennes singularits coniques. Enseign. Math. (2), 32:79-94.
  13. Watanabe, K. and Belyaev, A. G. (2001). Detection of salient curvature features on polygonal surfaces. Comput. Graph. Forum, 20(3):385-392.
  14. Xu, G. (2006). Convergence analysis of a discretization scheme for gaussian curvature over triangular surfaces. Comput. Aided Geom. Des., 23(2):193-207.
Download


Paper Citation


in Harvard Style

Mesmoudi M., De Floriani L. and Magillo P. (2010). A GEOMETRIC APPROACH TO CURVATURE ESTIMATION ON TRIANGULATED 3D SHAPES . In Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010) ISBN 978-989-674-026-9, pages 90-95. DOI: 10.5220/0002825900900095


in Bibtex Style

@conference{grapp10,
author={Mohammed Mesmoudi and Leila De Floriani and Paola Magillo},
title={A GEOMETRIC APPROACH TO CURVATURE ESTIMATION ON TRIANGULATED 3D SHAPES},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010)},
year={2010},
pages={90-95},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002825900900095},
isbn={978-989-674-026-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010)
TI - A GEOMETRIC APPROACH TO CURVATURE ESTIMATION ON TRIANGULATED 3D SHAPES
SN - 978-989-674-026-9
AU - Mesmoudi M.
AU - De Floriani L.
AU - Magillo P.
PY - 2010
SP - 90
EP - 95
DO - 10.5220/0002825900900095