APPARENT MOTION ESTIMATION USING PLANAR CONTOURS AND FOURIER DESCRIPTORS

Fatma Chaker, Faouzi Ghorbel

Abstract

In the present paper, we present a Fourier-based method for global apparent motion estimation. We apply this method for the estimation of the 2D affine transform linking two planar and closed curves. The originality of the method relies on the estimation of the parameters not in the original space but in the transformed space: Fourier space. This technique does not require explicit point to point correspondences; in fact such point correspondences are a by-product of the proposed algorithm. Experimental results and applications validate the use of our technique.

References

  1. Agarwal, A., Jawahar, C. V. and Narayanan, P. J. A Survey of Planar Homography Estimation Techniques. IIIT Technical Report IIIT/TR/2005/12, June 2005.
  2. Ghorbel, F., Mokadem, A., Daoudi, M., Avaro, O. and Sanson, H. Global planar rigid motion estimation applied to object-oriented coding, Conf. Proc. ICPR 96, vol. I, 1996, pp. 641-645.
  3. Ghorbel. F. Towards a unitary formulation for invariant images description: application to images coding, Annales des Télécommunications, France 1998.
  4. Hartley, R.I. and Zisserman, A. Multiple View Geometry inComputer Vision, 2nd Edition. Cambridge University Press, 2004.
  5. Kanatani, K. Statistical Optimization for Geometric Computation: Theory and Practice. Elsevier Science, 1996.
  6. Kruger, S. and Calway, A. Image Registration Using Multiresolution Frequency Domain Correlation. In British Machine Vision Conference (BMVC), pages 316.325, September 1998.
  7. Kumar, M. P., Goyal, S., Kuthirummal, S., Jawahar, C. V. and Narayanan, P. J. Discrete Contours in Multiple Views: Approximation and Recognition. Journal of Image and Vision Computing (IVC), 22(14):1229.1239, December 2004.
  8. Kumar, M. P., Jawahar, C. V. and Narayanan, P. J. Geometric Structure Computation from Conics. In Proceedings of Indian Conference on Computer Vision, Graphics, and Image Processing (ICVGIP), pages 9.14, 2004.
  9. Kumar, P. J., Jawahar, C. V. "Homography Estimation from Planar Contours," 3dpvt, pp.877-884, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06), 2006.
  10. Kuthirummal, S., Jawahar, C. V. and Narayanan, P. J. Planar Shape Recognition across Multiple Views. In Proceedings of the International Conference on Pattern Recognition (ICPR), pages 482.488, August 2002.
  11. Lisani, J. L. Shape based Automatic Images Comparison, Ph.D. Thesis, University Paris IX-Dauphine, 2001.
  12. Pauwels, E. J., Recognition of planar shapes under affine distortion, Int. J. Comput. Vision 14(1995) 49-65.
  13. Sugimoto, A., A Linear Algorithm for Computing the Homography from Conics in Correspondence. Journal of Mathematical Imaging and Vision, 13:115.130, 2000.
  14. Zuliani, M., Bhagavathy, S., Manjunath, B. S. and Kenney, C. S. Affine-Invariant Curve matching. 2004.
Download


Paper Citation


in Harvard Style

Chaker F. and Ghorbel F. (2010). APPARENT MOTION ESTIMATION USING PLANAR CONTOURS AND FOURIER DESCRIPTORS . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-028-3, pages 322-327. DOI: 10.5220/0002826603220327


in Bibtex Style

@conference{visapp10,
author={Fatma Chaker and Faouzi Ghorbel},
title={APPARENT MOTION ESTIMATION USING PLANAR CONTOURS AND FOURIER DESCRIPTORS},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={322-327},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002826603220327},
isbn={978-989-674-028-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010)
TI - APPARENT MOTION ESTIMATION USING PLANAR CONTOURS AND FOURIER DESCRIPTORS
SN - 978-989-674-028-3
AU - Chaker F.
AU - Ghorbel F.
PY - 2010
SP - 322
EP - 327
DO - 10.5220/0002826603220327