SETTING GRAPH CUT WEIGHTS FOR AUTOMATIC FOREGROUND EXTRACTION IN WOOD LOG IMAGES

Enrico Gutzeit, Stephan Ohl, Arjan Kuijper, Joerg Voskamp, Bodo Urban

Abstract

The automatic extraction of foreground objects from the background is a well known problem. Much research has been done to solve the foreground/background segmentation with graph cuts. The major challenge is to determine the weights of the graph in order to obtain a good segmentation. In this paper we address this problem with a focus on the automatic segmentation of wood logs. We introduce a new solution to get information about foreground and background. This information is used to set the weights of the graph cut method. We compare four different methods to set these weights and show that the best results are obtained with our novel method, which is based on density estimation.

References

  1. Boykov, Y. and Jolly, M. P. (2001). Interactive graph cuts for optimal boundary region segmentation of object in n-d images. In Int. C. Comput. Vision, pages 105-112.
  2. Boykov, Y. and Kolmogorov, V. (2004). An experimental comparision of min-cut/max-flow algorithms for energy minimation in vision. In PAMI, pages 1124- 1137.
  3. C. Rothar, V. K. and Blake, A. (2004). Grabcut - interactive forground extraction using iterated graph cuts. In ACM Transactions on Graphics, pages 309-314. ACM Press.
  4. F. Malmberg, C. O. and Borgefors, G. (2009). Binarization of phase contrast volume images of fibrous materials - a case study. In International Conference on Computer Vision Theory and Applications 2009, pages 97- 125.
  5. Felzenszwalb, P. F. (2004). Efficent graph-based image segmentation. In International Journal of Computer Vision, pages 888-905.
  6. Fink, F. (2004). Foto-optische erfassung der dimension von nadelrundholzabschnitten unter einsatz digitaler bildverarbeitender methoden. In Dissertation. Fakultaet fuer Forst- und Umweltwissenschaften der AlbertLudwigs-Universitaet Freiburg i. Brsg.
  7. Jaehne, B. (2005). Digital Image Processing. Springer Verlag, Berlin Heidelberg, 6th reviewed and extended edition edition.
  8. Jensen, H. W. (2001). Realistic Image Synthesis Using Photon Mapping. The Morgan Kaufmann Series in Computer Graphics.
  9. Orchard, M. and Bouman, C. (1991). Color quantization of images. In IEEE Transactions on Signal Processing, pages 2677-2690.
  10. Otsu, N. (1979). A threshold selection method from graylevel histograms. In IEEE Transactions on Systems, Man and Cybernetics, pages 62-66.
  11. Samet, H. (2006). Foundations of Multidimensional and Metric Data Structures. The Morgan Kaufmann Series in Computer Graphics.
  12. Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. In IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 888-905.
Download


Paper Citation


in Harvard Style

Gutzeit E., Ohl S., Kuijper A., Voskamp J. and Urban B. (2010). SETTING GRAPH CUT WEIGHTS FOR AUTOMATIC FOREGROUND EXTRACTION IN WOOD LOG IMAGES . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-029-0, pages 60-67. DOI: 10.5220/0002831000600067


in Bibtex Style

@conference{visapp10,
author={Enrico Gutzeit and Stephan Ohl and Arjan Kuijper and Joerg Voskamp and Bodo Urban},
title={SETTING GRAPH CUT WEIGHTS FOR AUTOMATIC FOREGROUND EXTRACTION IN WOOD LOG IMAGES},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={60-67},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002831000600067},
isbn={978-989-674-029-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)
TI - SETTING GRAPH CUT WEIGHTS FOR AUTOMATIC FOREGROUND EXTRACTION IN WOOD LOG IMAGES
SN - 978-989-674-029-0
AU - Gutzeit E.
AU - Ohl S.
AU - Kuijper A.
AU - Voskamp J.
AU - Urban B.
PY - 2010
SP - 60
EP - 67
DO - 10.5220/0002831000600067