DECOMPOSITION OF A 3D TRIANGULAR MESH INTO QUADRANGULATED PATCHES

Roseline Bénière, Gérard Subsol, William Puech, Gilles Gesquière, François Le Breton

Abstract

In this paper we present a method to decompose a 3D triangular mesh into a set of quadrangulated patches. This method consists in merging triangles to obtain quads. The quads are then grouped together to compose quadrangulated areas and patches. Unlike many methods of remeshing, this method does not move the vertices of the original triangular mesh. Quadrangulated patches extracted can then be used as a support of a parametric function or of a subdivision scheme.

References

  1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lvy, B., and Desbrun, M. (2003). Anisotropic polygonal remeshing. ACM Transactions on Graphics, SIGGRAPH 2003 Conference Proceedings, 22(3):485-493.
  2. Alliez, P., Ucelli, G., Gotsman, C., and Attene, M. (2007). Recent advances in remeshing of surfaces. In Shape Analysis and Structuring, pages 53-82. Springer Berlin Heidelberg.
  3. Arden, G. (2001). Approximation Properties of Subdivision Surfaces. PhD thesis, University of Washington.
  4. Bommes, D., Vossemer, T., and Kobbelt, L. (2009a). Quadrangular parametrization for reverse engineering. Lecture Notes in Computer Science (to appear).
  5. Bommes, D., Zimmer, H., and Kobbelt, L. (2009b). Mixed-integer quadrangulation. ACM Trans. Graph., 28(3):1-10.
  6. Borouchaki, H., Frey, P. J., and George, P. L. (1997). Maillage de surfaces paramétriques. Partie III: Eléments quadrangulaires. 325(1):551-556.
  7. Catmull, E. and Clark, J. (1978). Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design, 10(6):350-355.
  8. Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., and Hart, J. C. (2006). Spectral surface quadrangulation. ACM Trans. Graph., 25(3):1057-1066.
  9. Dong, S., Kircher, S., and Garland, M. (2005). Harmonic functions for quadrilateral remeshing of arbitrary manifolds. Computer Aided Geometry Design, Special Issue on Geometry Processing, 22(5):392- 423.
  10. Eppstein, D., Goodrich, M. T., Kim, E., and Tamstorf, R. (2008). Motorcycle graphs : Canonical mesh partitioning. Comput. Graph. Forum, 27(5):1477-1486.
  11. Frey, P. J. and George, P. L. (1999). Maillage : Applications aux éléments finis. Hermes Science.
  12. Hormann, K. and Greiner, G. (2000). Quadrilateral remeshing. In Girod, B., Greiner, G., Niemann, H., and Seidel, H.-P., editors, Proceedings of Vision, Modeling, and Visualization 2000, pages 153-162, Saarbrücken, Germany.
  13. Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L., and Bao, H. (2008). Spectral quadrangulation with orientation and alignment control. ACM Trans. Graph., 27(5):1- 9.
  14. Krishnamurthy, V. and Levoy, M. (1996). Fitting smooth surfaces to dense polygon meshes. In Proceedings of SIGGRAPH 96, pages 313-324.
  15. Lai, Y.-K., Kobbelt, L., and Hu, S.-M. (2009). Feature aligned quad dominant remeshing using iterative local updates. Computer-Aided Design (to appear).
  16. Miyazaki, R. and Harada, K. (2009). Transformation of a closed 3D triangular mesh to a quadrilateral mesh based on feature edges. IJCSNS International Journal of Computer Science and Network Security, 9(5).
  17. Owen, S. J., Staten, M. L., Canann, S. A., and Saigal, S. (1998). Advancing front quadrilateral meshing using triangle transformations. 7th International Meshing Roundtable, pages 409-428.
  18. Soltan, V. and Gorpinevich, A. (1993). Minimum dissection of a rectilinear polygon with arbitrary holes into rectangles. Discrete and Computational Geometry, 9(1):57-59.
  19. Tarini, M., Pietroni, N., Cignoni, P., Panozzo, D., and Puppo, E. (2010). Practical quad mesh simplification. Computer Graphics Forum, 29(2):To appear.
Download


Paper Citation


in Harvard Style

Bénière R., Subsol G., Puech W., Gesquière G. and Le Breton F. (2010). DECOMPOSITION OF A 3D TRIANGULAR MESH INTO QUADRANGULATED PATCHES . In Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010) ISBN 978-989-674-026-9, pages 96-103. DOI: 10.5220/0002833900960103


in Bibtex Style

@conference{grapp10,
author={Roseline Bénière and Gérard Subsol and William Puech and Gilles Gesquière and François Le Breton},
title={DECOMPOSITION OF A 3D TRIANGULAR MESH INTO QUADRANGULATED PATCHES},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010)},
year={2010},
pages={96-103},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002833900960103},
isbn={978-989-674-026-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010)
TI - DECOMPOSITION OF A 3D TRIANGULAR MESH INTO QUADRANGULATED PATCHES
SN - 978-989-674-026-9
AU - Bénière R.
AU - Subsol G.
AU - Puech W.
AU - Gesquière G.
AU - Le Breton F.
PY - 2010
SP - 96
EP - 103
DO - 10.5220/0002833900960103