OBJECT DETECTION USING PICTORIAL STRUCTURE OF GABOR TEMPLATE

Babak Saleh, Mohammad Rastegari

Abstract

Object detection methods are divided into two main branches: In the global approach one extracts low level features and uses machine learning techniques. In the part-based approach one uses deformable templates. We present a Hybrid approach for constructing a deformable template for modeling and detection. Initially one applies Gabor wavelet filters to extract low level features and constructs graphs which resemble shock graphs. A minimum spanning tree (MST) is extracted and is called the pictorial graph. It is used for matching. The pictorial graph is suitable for preserving the visual appearance of the shape of the object and for accommodating shape variances. In this hybrid approach we maintain the generality of the global and the efficiency of part-based approaches. Our algorithm has been applied to a set of test cases and the result shows improved performance as compared to standard object detection methods that do not rely on human intervention.

References

  1. A. Amini, T. Weymouth, R. J. (1990). Using dynamic programming for solving variational problems in vision. In Vol. 12, No. 9, pp. 855-867. PAMI.
  2. Amira, A. and Farrell, P. (2005). An automatic face recognition system based on wavelet transforms. In ISCAS (6), pages 6252-6255.
  3. Borgefors, G. (1984). Distance transformations in arbitrary dimensions. In Vol. 27, No. 3, pp. 321-345. CVGIP.
  4. Borgefors, G. (1986). Distance transformations in digital images. In Vol. 34, No. 3, pp. 344-371. CVGIP.
  5. E. Yen, A. S. (2005). Image recognition via deformable template. statistical methodology. In pp. 213-225. Statistical Methodology.
  6. Felzenszwalb, P. F. and Huttenlocher, D. P. (2005). Pictorial structures for object recognition. International Journal of Computer Vision, 61(1):55-79.
  7. Fischler, M. and Elschlager, R. (1986). The representation and matching of pictorial structures. In Vol. 22, No. 1, pp. 67-92. IEEE Trans. On Computers.
  8. Ioffe, S. and Forsyth, D. A. (2001). Mixtures of trees for object recognition. In CVPR (2), pages 180-185.
  9. Kohandani, A., Basir, O. A., and Kamel, M. S. (2006). A fast algorithm for template matching. In ICIAR (2), pages 398-409.
  10. Kruskal, J. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. In Proceedings of the American Mathematical Society.
  11. Lowe, D. G. (1991). Fitting parameterized threedimensional models to images. IEEE Trans. Pattern Anal. Mach. Intell., 13(5):441-450.
  12. P.F. Felzenszwalb, D. H. (2000). Efficient matching of pictorial structures. In IEEE Conference on Computer Vision and Pattern Recognition.
  13. P.F. Felzenszwalb, D. H. (2004). Distance transforms of sampled functions. In Cornell Computing and Information Science Technical Report TR2004-1963.
  14. Ramanan, D. and Sminchisescu, C. (2006). Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1.
  15. Wu, Y., Si, Z., Gong, H., and Zhu, S. (2009). Learning active basis model for object detection and recognition. In IJCV.
  16. Wu, Y. N., Si, Z., Gong, H., and Zhu, S.-C. (2008). Active basis model, shared sketch algorithm, and sum-max maps. IJCV.
  17. Zhang, L., Gong, H., Wu, T., and Dong, J. (2008). Deformable template combining alignable and nonalignable sketches. In ICPR, pages 1-4.
Download


Paper Citation


in Harvard Style

Saleh B. and Rastegari M. (2010). OBJECT DETECTION USING PICTORIAL STRUCTURE OF GABOR TEMPLATE . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-029-0, pages 396-400. DOI: 10.5220/0002834203960400


in Bibtex Style

@conference{visapp10,
author={Babak Saleh and Mohammad Rastegari},
title={OBJECT DETECTION USING PICTORIAL STRUCTURE OF GABOR TEMPLATE},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={396-400},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002834203960400},
isbn={978-989-674-029-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)
TI - OBJECT DETECTION USING PICTORIAL STRUCTURE OF GABOR TEMPLATE
SN - 978-989-674-029-0
AU - Saleh B.
AU - Rastegari M.
PY - 2010
SP - 396
EP - 400
DO - 10.5220/0002834203960400