RELIEF MAPPING ON CUBIC CELL COMPLEXES

Karl Apaza, Carlos Andujar

Abstract

In this paper we present an algorithm for parameterizing arbitrary surfaces onto a quadrilateral domain defined by a collection of cubic cells. The parameterization inside each cell is implicit and thus requires storing no texture coordinates. Based upon this parameterization, we propose a unified representation of geometric and appearance information of complex models. The representation consists of a set of cubic cells (providing a coarse representation of the object) together with a collection of distance maps (encoding fine geometric detail inside each cell). Our new representation has similar uses than geometry images, but it requires storing a single distance value per texel instead of full vertex coordinates. When combined with color and normal maps, our representation can be used to render an approximation of the model through an output-sensitive relief mapping algorithm, thus being specially amenable for GPU raytracing.

References

  1. Andujar, C., Boo, J., Brunet, P., Fairen, M., Navazo, I., Vazquez, P., and Vinacua, A. (2007). Omnidirectional relief impostors. Computer Graphics Forum, 26(3):553-560.
  2. Andujar, C., Brunet, P., and Ayala, D. (2002). Topologyreducing simplification through discrete models. ACM Transactions on Graphics, 20(6):88-105.
  3. Baboud, L. and Décoret, X. (2006). Rendering geometry with relief textures. In Proc. of Graphics Interface, pages 195-201, Toronto, Canada.
  4. Benson, D. and Davis, J. (2002). Octree textures. ACM Transactions on Graphics (TOG), 21(3):785-790.
  5. Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., and Hart, J. C. (2006). Spectral surface quadrangulation. ACM Transactions on Graphics, 25(3):1057-1066.
  6. Donnelly, W. (2005). Per-pixel displacement mapping with distance functions. In GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation, pages 123-136.
  7. Eisemann, E. and Décoret, X. (2008). Single-pass gpu solid voxelization for real-time applications. In GI 7808: Proceedings of graphics interface 2008, pages 73-80.
  8. Floater, M. S. and Hormann, K. (2005). Surface parameterization: a tutorial and survey. In N. A. Dodgson, M. S. F. and Sabin, M. A., editors, Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization, pages 157-186. Springer, Berlin.
  9. García, I. and Patow, G. (2008). Igt: inverse geometric textures. ACM Transactions on Graphics, 27(5):1-9.
  10. Gu, X., Gortler, S. J., and Hoppe, H. (2002). Geometry images. ACM Transactions on Graphics, 21(3):355- 361.
  11. Guskov, I., Vidimc?e, K., Sweldens, W., and Schröder, P. (2000). Normal meshes. In SIGGRAPH'00, pages 95-102.
  12. Lee, A. W. F., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D. (1998). Maps: multiresolution adaptive parameterization of surfaces. In SIGGRAPH'98, pages 95-104.
  13. Lefebvre, S. and Dachsbacher, C. (2007). Tiletrees. In Proceedings of the 2007 symposium on Interactive 3D graphics and games, page 31. ACM.
  14. Lefebvre, S., Hornus, S., and Neyret, F. (2005). Octree Textures on the GPU. GPU gems, 2:595-613.
  15. Lefohn, A., Sengupta, S., Kniss, J., Strzodka, R., and Owens, J. (2006). Glift: Generic, efficient, randomaccess GPU data structures. ACM Transactions on Graphics (TOG), 25(1):60-99.
  16. Losasso, F., Hoppe, H., Schaefer, S., and Warren, J. (2003). Smooth geometry images. In SGP 7803: 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 138-145. Eurographics Association.
  17. Peachey, D. (1985). Solid texturing of complex surfaces. ACM SIGGRAPH Computer Graphics, 19(3):286.
  18. Perlin, K. (1985). An image synthesizer. ACM SIGGRAPH Computer Graphics, 19(3):296.
  19. Policarpo, F. and Oliveira, M. M. (2006). Relief mapping of non-height-field surface details. In Proc. of ACM Symp. on Interactive 3D Graphics and Games, pages 55-62.
  20. Policarpo, F., Oliveira, M. M., and Comba, J. (2005). Realtime relief mapping on arbitrary polygonal surfaces. In Proc. of ACM Symposium on Interactive 3D Graphics and Games, pages 155-162.
  21. Praun, E., Sweldens, W., and Schröder, P. (2001). Consistent mesh parameterizations. In SIGGRAPH 7801, pages 179-184.
  22. Purnomo, B., Cohen, J. D., and Kumar, S. (2004). Seamless texture atlases. In SGP 7804: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 65-74.
  23. Sheffer, A., Praun, E., and Rose, K. (2006). Mesh parameterization methods and their applications. Foundations and Trends in Computer Graphics and Vision, 2(2):105-171.
  24. Tarini, M., Hormann, K., Cignoni, P., and Montani, C. (2004). Polycube-maps. In SIGGRAPH 7804, pages 853-860.
  25. Tatarchuk, N. (2006). Dynamic parallax occlusion mapping with approximate soft shadows. In I3D 7806: Proceedings of the 2006 symposium on Interactive 3D graphics and games, pages 63-69.
Download


Paper Citation


in Harvard Style

Apaza K. and Andujar C. (2010). RELIEF MAPPING ON CUBIC CELL COMPLEXES . In Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010) ISBN 978-989-674-026-9, pages 181-189. DOI: 10.5220/0002837001810189


in Bibtex Style

@conference{grapp10,
author={Karl Apaza and Carlos Andujar},
title={RELIEF MAPPING ON CUBIC CELL COMPLEXES},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010)},
year={2010},
pages={181-189},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002837001810189},
isbn={978-989-674-026-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010)
TI - RELIEF MAPPING ON CUBIC CELL COMPLEXES
SN - 978-989-674-026-9
AU - Apaza K.
AU - Andujar C.
PY - 2010
SP - 181
EP - 189
DO - 10.5220/0002837001810189