EVALUATING THE POTENTIAL OF TEXTURE AND COLOR DESCRIPTORS FOR REMOTE SENSING IMAGE RETRIEVAL AND CLASSIFICATION

Jefersson A. dos Santos, Otávio A. B. Penatti, Ricardo da S. Torres

Abstract

Classifying Remote Sensing Images (RSI) is a hard task. There are automatic approaches whose results normally need to be revised. The identification and polygon extraction tasks usually rely on applying classification strategies that exploit visual aspects related to spectral and texture patterns identified in RSI regions. There are a lot of image descriptors proposed in the literature for content-based image retrieval purposes that may be useful for RSI classification. This paper presents a comparative study to evaluate the potential of using successful color and texture image descriptors for remote sensing retrieval and classification. Seven descriptors that encode texture information and twelve color descriptors that can be used to encode spectral information were selected. We perform experiments to evaluate the effectiveness of these descriptors, considering image retrieval and classification tasks. To evaluate descriptors in classification tasks, we also propose a methodology based on KNN classifier. Experiments demonstrate that Joint Auto-Correlogram (JAC), Color Bitmap, Invariant Steerable Pyramid Decomposition (SID) and Quantized Compound Change Histogram (QCCH) yield the best results.

References

  1. de O. Stehling, R., Nascimento, M. A., and Falcao, A. X. (2001). An adaptive and efficient clustering-based approach for content-based image retrieval in image databases. In Proceedings of the International Database Engineering & Applications Symposium, pages 356-365, Washington, DC, USA.
  2. de O. Stehling, R., Nascimento, M. A., and Falca˜o, A. X. (2002). A compact and efficient image retrieval approach based on border/interior pixel classification. In Proceedings of the eleventh international conference on Information and knowledge management, pages 102-109, New York, NY, USA.
  3. Kovalev, V. and Volmer, S. (1998). Color co-occurence descriptors for querying-by-example. MultiMedia Modeling, 0:32-38.
  4. Lu, T. and Chang, C. (2007). Color image retrieval technique based on color features and image bitmap. Information Processing and Management, 43(2):461- 472.
  5. Manjunath, B. S., Ohm, J.-R., Vasudevan, V. V., and Yamada, A. (June 2001). Color and texture descriptors. IEEE Transactions on Circuits and Systems for Video Technology, 11(6):703-715.
  6. Mo, D.-K., Lin, H., Li, J., Sun, H., and Xiong, Y.-J. (2007). Design and implementation of a high spatial resolution remote sensing image intelligent interpretation system. Data Science Journal, 6:S445-S452.
  7. Ojala, T., Pietikäinen, M., and Mäenpää, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7):971-987.
  8. Paschos, G., Radev, I., and Prabakar, N. (2003). Image content-based retrieval using chromaticity moments. IEEE Transactions on Knowledge and Data Engineering, 15(5):1069-1072.
  9. Pass, G., Zabih, R., and Miller, J. (1996). Comparing images using color coherence vectors. In Proceedings of the fourth ACM international conference on Multimedia, pages 65-73, New York, NY, USA.
  10. Penatti, O. A. B. and Torres, R. d. S. (2008). Color descriptors for web image retrieval: A comparative study. XXI Brazilian Symposium on Computer Graphics and Image Processing, pages 163-170.
  11. Samal, A., Bhatia, S., Vadlamani, P., and Marx, D. (2009). Searching satellite imagery with integrated measures. Pattern Recogn., 42(11):2502-2513.
  12. Showengerdt, R. (1983). Techniques for Image Processing and Classification in Remote Sensing. Academic Press, New York.
  13. Stricker, M. A. and Orengo, M. (1995). Similarity of color images. In Niblack, W. and Jain, R. C., editors, Proc. SPIE Storage and Retrieval for Image and Video Databases III, volume 2420, pages 381-392.
  14. Swain, M. J. and Ballard, D. H. (1991). Color indexing. International Journal of Computer Vision, 7(1):11-32.
  15. Tao, B. and Dickinson, B. W. (2000). Texture recognition and image retrieval using gradient indexing. Journal of Visual Communication and Image Representation, 11(3):327 - 342.
  16. Tusk, C., Koperski, K., Aksoy, S., and Marchisio, G. (2003). Automated feature selection through relevance feedback. In Geoscience and Remote Sensing Symposium, 2003. IGARSS 7803. Proceedings. 2003 IEEE International, volume 6, pages 3691-3693 vol.6.
  17. Unser, M. (1986). Sum and difference histograms for texture classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1):118-125.
  18. Utenpattanant, A., Chitsobhuk, O., and Khawne, A. (20-22 February 2006). Color descriptor for image retrieval in wavelet domain. Eighth International Conference on Advanced Communication Technology, 1:818-821.
  19. Williams, A. and Yoon, P. (2007). Content-based image retrieval using joint correlograms. Multimedia Tools and Applications, 34(2):239-248.
  20. Wu, P., Manjunath, B. S., Newsam, S., and Shin, H. D. (2000). A texture descriptor for browsing and similarity retrieval. Signal Processing: Image Communication, 16(1-2):33 - 43.
  21. Yildirim, I., Ersoy, O. K., and Yazgan, B. (2005). Improvement of classification accuracy in remote sensing using morphological filter. Advances in Space Research.
  22. Zegarra, J. A. M., Leite, N. J., and Torres, R. d. S. (2007). Rotation-invariant and scale-invariant steerable pyramid decomposition for texture image retrieval. In XX Brazilian Symposium on Computer Graphics and Image Processing, pages 121-128, Washington, DC, USA. IEEE Computer Society.
Download


Paper Citation


in Harvard Style

A. dos Santos J., A. B. Penatti O. and da S. Torres R. (2010). EVALUATING THE POTENTIAL OF TEXTURE AND COLOR DESCRIPTORS FOR REMOTE SENSING IMAGE RETRIEVAL AND CLASSIFICATION . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-029-0, pages 203-208. DOI: 10.5220/0002843402030208


in Bibtex Style

@conference{visapp10,
author={Jefersson A. dos Santos and Otávio A. B. Penatti and Ricardo da S. Torres},
title={EVALUATING THE POTENTIAL OF TEXTURE AND COLOR DESCRIPTORS FOR REMOTE SENSING IMAGE RETRIEVAL AND CLASSIFICATION},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={203-208},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002843402030208},
isbn={978-989-674-029-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)
TI - EVALUATING THE POTENTIAL OF TEXTURE AND COLOR DESCRIPTORS FOR REMOTE SENSING IMAGE RETRIEVAL AND CLASSIFICATION
SN - 978-989-674-029-0
AU - A. dos Santos J.
AU - A. B. Penatti O.
AU - da S. Torres R.
PY - 2010
SP - 203
EP - 208
DO - 10.5220/0002843402030208