SEED–GROWING HEART SEGMENTATION IN HUMAN ANGIOGRAMS

Antonio Bravo, José Clemente, Rubén Medina

Abstract

In this paper an image segmentation scheme that is based on combinations of a non–parametric technique and a seed based clustering algorithm is reported. The method has been applied to clinical unsubtracted angiograms of the human heart. The first step of the method consists in applying a mean shift–based filter in order to improve the left ventricle cavity information in angiographic images. Second, the initial seed is semi–automatically generated from the aortic valve manual localization by a specialist. Third, each angiographic image is segmented using a clustering algorithm that begins with the seed which is grown until image pixels associated to the left ventricle cavity are clustered. A validation is performed by comparing the estimated contours with respect to contours manually traced by a cardiologists. From this validation stage the maximum of the average contour error considering six angiographic sequences (a total of 178 images) is 7.30 % .

References

  1. Bravo, A. and Medina, R. (2008). An unsupervised clustering framework for automatic segmentation of left ventricle cavity in human heart angiograms. Comput Med Imaging Graph., 32(5):396-408.
  2. Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Machine Intell., 24(5):603-619.
  3. Ferrazzi, P., Matteucci, M., Merlo, M., Iacovoni, A., Rescigno, G., Bottai, M., Parrella, P., Lorini, L., Senni, M., and Gavazzi, A. (2006). Surgical ventricular reverse remodeling in severe ischemic dilated cardiomyopathy: the relevance of the left ventricular equator as a prognostic factor. J Throac Cardiovasc Surg, 131(2):357-363.
  4. Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. Academic Press Inc, USA.
  5. Fukunaga, K. and Hostetler, L. (1975). The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inform. Theory, 21(1):32-40.
  6. Haralick, R. and Shapiro, L. (1992). Computer and Robot Vision, volume I. Addison-Wesley Publishing Company, USA.
  7. Jain, A., Murty, M., and Flynn, P. (1999). Data clustering: a review. ACM Comp. Surv, 31(3):264-323.
  8. Kennedy, J., Trenholme, S., Kaiser, I., and Wash, S. (1970). Left ventricular volume and mass from single-plane cineangiocardiogram. A comparison of anteroposterior and right anterior oblique methods. Am Heart J, 80(3):343-352.
  9. Lehmann, T. M., Beier, D., Thies, C., and Seidl, T. (2005). Segmentation of medical images combining local, regional, global, and hierarchical distances into a bottom-up region merging scheme. In Proceedings of SPIE, volume 5747, pages 546-555.
  10. Medina, R., Garreau, M., Toro, J., Coatrieux, J. L., and Jugo, D. (2004). Three-dimensional reconstruction of left ventricle from two angiographic views: An evidence combination approach. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 34(3):359-370.
  11. Oost, E., Koning, G., Sonka, M., Oemrawsingh, P. V., Reiber, J. H. C., and Lelieveldt, B. P. F. (2006). Automated contour detection in X-ray left ventricular angiograms using multiview active appearance models and dynamic programming. IEEE Trans. Med. Imag., 25(9):1158-1171.
  12. Rabit, O. (2000). Quantitative analysis of cardiac function. In Bankman, I. N., editor, Handbook of Medical Imaging: Processing and Analysis, pages 359-374. Academic Press, San Diego.
  13. Sui, L., Haralick, R., and Sheehan, F. (2001). A knowledgebased boundary delineation system for contrast ventriculograms. IEEE Trans. Inform. Technol. Biomed., 5(2):116-132.
  14. Suzuki, K., Horiba, I., Sugie, N., and Nanki, M. (2004). Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector. IEEE Trans. Med. Imag., 23(3):330-339.
  15. WHO (2002). Reducing risk and promoting healthy life. The World Health Report 2002 Geneva, World Health Organization.
  16. Yan, S., Lamberto, B., Vladir, M., and Harry, G. (1978). From Cardiac Catheterization Data to hemodynamic Parameters. F. A. Davis Company, USA.
Download


Paper Citation


in Harvard Style

Bravo A., Clemente J. and Medina R. (2010). SEED–GROWING HEART SEGMENTATION IN HUMAN ANGIOGRAMS . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-029-0, pages 91-96. DOI: 10.5220/0002848900910096


in Bibtex Style

@conference{visapp10,
author={Antonio Bravo and José Clemente and Rubén Medina},
title={SEED–GROWING HEART SEGMENTATION IN HUMAN ANGIOGRAMS},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={91-96},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002848900910096},
isbn={978-989-674-029-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)
TI - SEED–GROWING HEART SEGMENTATION IN HUMAN ANGIOGRAMS
SN - 978-989-674-029-0
AU - Bravo A.
AU - Clemente J.
AU - Medina R.
PY - 2010
SP - 91
EP - 96
DO - 10.5220/0002848900910096