A NONLINEAR VERTEX-BASED MODEL FOR ANIMATION OF TWO-DIMENSIONAL DRY FOAM

Micky Kelager, Kenny Erleben

Abstract

Foam is the natural phenomenon of bubbles that arise due to nucleation of gas in liquids. The current state of art in Computer Graphics rarely includes foam effects on large scales. In this paper we introduce a vertexbased, quasi-static equilibrium model from the field of Computational Physics as a new paradigm for foam effects. Dynamic processes like gas diffusion and bubble collapse are added prior equilibration. Animationwise the numerical model is well behaved and stable and can converge even if the foam is locally ill-defined. A novel contribution is the Ghost-Bubble method that allows foam simulations with free dynamic boundary conditions. The presented model is interesting and well suited for 2D graphics applications like video games and procedural or animated textures.

References

  1. Bolton, F. and Weaire, D. (1992). The effects of plateau borders in the two-dimensional soap froth. II. general simulation and analysis of rigidity loss transition. Philosophical Magazine Part B, 65(3):473-487.
  2. Cleary, P. W., Pyo, S. H., Prakash, M., and Koo, B. K. (2007). Bubbling and frothing liquids. ACM Transactions on Graphics, 26(3):97-1-97-6.
  3. Durikovic, R. (2001). Animation of soap bubble dynamics, cluster formation and collision. Comput. Graph. Forum, 20(3).
  4. Glassner, A. (2000a). Soap bubbles: Part 1. IEEE Comput. Graph. Appl., 20(5):76-84.
  5. Glassner, A. (2000b). Soap bubbles: Part 2. IEEE Comput. Graph. Appl., 20(6):99-109.
  6. Hong, J.-M. and Kim, C.-H. (2003). Animation of bubbles in liquid. Comput. Graph. Forum, 22(3):253-262.
  7. Icart, I. and Arquès, D. (1999). An approach to geometrical and optical simulation of soap froth. Computers & Graphics, 23(3):405-418.
  8. Kawasaki, K., Nagai, T., and Nakashima, K. (1989). Vertex models for two-dimensional grain growth. Philosophical Magazine Part B, 60(3):399-421.
  9. Kermode, J. P. and Weaire, D. (1990). 2D-FROTH: a program for the investigation of 2-dimensional froths. Computer Physics Communications, 60(1):75-109.
  10. Kim, B., Liu, Y., Llamas, I., Jiao, X., and Rossignac, J. (2007). Simulation of bubbles in foam with the volume control method. In SIGGRAPH 7807: ACM SIGGRAPH 2007 papers, page 98, New York, NY, USA. ACM.
  11. Kück, H., Vogelgsang, C., and Greiner, G. (2002). Simulation and Rendering of Liquid Foams. In Proc. Graphics Interface, pages 81-88.
  12. Li, L. and Volkov, V. (2006). Inflatable models. J. Comput. Sci. Technol., 21(2):154-158.
  13. Losasso, F., Gibou, F., and Fedkiw, R. (2004). Simulating water and smoke with an octree data structure. SIGGRAPH 2004, ACM TOG, 23:457-462.
  14. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. (2006). Multiple interacting liquids. SIGGRAPH 2006, ACM TOG, 25:812-819.
  15. Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer, second edition.
  16. Selle, A., Rasmussen, N., and Fedkiw, R. (2005). A vortex particle method for smoke, water and explosions. SIGGRAPH 2005, ACM TOG, 24:910-914.
  17. Stam, J. (1999). Stable fluids. In SIGGRAPH 1999 Conference Proceedings, pages 121-128.
  18. Weaire, D. and Hutzler, S. (1999). The Physics of Foams. Oxford University Press, New York.
  19. Weaire, D., Hutzler, S., Cox, S., Kern, N., Alonso, M. D., and Drenckhan, W. (2003). The fluid dynamics of foams. Journal of Physics: Condensed Matter, 15(1):S65-S73.
  20. Weaire, D. and Kermode, J. P. (1983). Computer simulation of a two-dimensional soap froth - i. method and motivation. Philosophical Magazine Part B, 48(3):245- 259.
  21. Weaire, D. and Kermode, J. P. (1984). Computer simulation of a two-dimensional soap froth - ii. analysis of results. Philosophical Magazine Part B, 50(3):379- 395.
  22. Zheng, W., Yong, J.-H., and Paul, J.-C. (2006). Simulation of bubbles. In SCA 7806: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 325-333, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
Download


Paper Citation


in Harvard Style

Kelager M. and Erleben K. (2010). A NONLINEAR VERTEX-BASED MODEL FOR ANIMATION OF TWO-DIMENSIONAL DRY FOAM . In Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010) ISBN 978-989-674-026-9, pages 296-303. DOI: 10.5220/0002849002960303


in Bibtex Style

@conference{grapp10,
author={Micky Kelager and Kenny Erleben},
title={A NONLINEAR VERTEX-BASED MODEL FOR ANIMATION OF TWO-DIMENSIONAL DRY FOAM},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010)},
year={2010},
pages={296-303},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002849002960303},
isbn={978-989-674-026-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010)
TI - A NONLINEAR VERTEX-BASED MODEL FOR ANIMATION OF TWO-DIMENSIONAL DRY FOAM
SN - 978-989-674-026-9
AU - Kelager M.
AU - Erleben K.
PY - 2010
SP - 296
EP - 303
DO - 10.5220/0002849002960303