Antonio Bravo, José Clemente, Miguel Vera, José Avila, Rubén Medina


An automatic approach based on the generalized Hough transform (GHT) and unsupervised clustering technique to obtain the endocardial surface is proposed. The approach is applied to multi slice computerized tomography (MSCT) images of the heart. The first step is the initialization, where a GHT–based segmentation algorithm is used to detect the edocardial contour in one MSCT slice. The centroid of this contour is used as a seed point for initializing a clustering algorithm. A two stage segmentation algorithm is used for segmenting the three–dimensional MSCT database. First, the complete database is filtered using mathematical morphology operators in order to improve the left ventricle cavity information in these images. The second stage is based on a region growing method. A seed point located inside the cardiac cavity is used as input for the clustering algorithm. This seed point is propagated along the image sequence to obtain the left ventricle surfaces for all instants of the cardiac cycle. The method is validated by comparing the estimated surfaces with respect to left ventricle shapes drawn by a cardiologist. The average error obtained was 1.52 mm.


  1. Angelini, E., Laine, A., Takuma, S., Holmes, J., and Homma, S. (2001). LV volume quantification via spatiotemporal analysis of real-time 3-D echocardiography. IEEE Trans. Med. Imag., 20(2):457-469.
  2. Assen, H. V., Danilouchkine, M., Dirksen, M., Reiber, J., and Lelieveldt, B. (2008). A 3D active shape model driven by fuzzy inference: Application to cardiac CT and MR. IEEE Trans. Inform. Technol. Biomed., 12(5):595-605.
  3. Ballard, D. (1981). Generalizing the hough transform to detect arbitrary shapes. Pattern Recog., 13(2):111- 122.
  4. Bankman, I. (2000). Handbook of Medical Imaging: Processing and Analisys. Academic Press, San Diego.
  5. Bravo, A. and Medina, R. (2008). An unsupervised clustering framework for automatic segmentation of left ventricle cavity in human heart angiograms. Comput Med Imaging Graph., 32(5):396-408.
  6. Canny, J. (1986). A computational approach to edge detection. IEEE Trans. Pattern Anal. Machine Intell., PAMI-8:679-698.
  7. Chalana, V. and Kim, Y. (1997). A methodology for evaluation of boundary detection algorithms on medical images. IEEE Trans. Med. Imag., 16(5):642-652.
  8. Chen, T., Metaxas, D., and Axel, L. (2004). 3-D cardiac anatomy reconstruction using high resolution CT data. In Proc. MICCAI (1), pages 411-418.
  9. DICOM (1999). Digital imaging and communication in medicine DICOM. NEMA Standards Publication.
  10. Duda, R., Hart, P., and Stork, D. (2000). Pattern Classification. Wiley-Interscience, New York.
  11. Field, M. J. (1996). Telemedicine: A Guide to Assessing Telecommunications in Health Care. Institute of Medicine, National Academy Press, Washington.
  12. Fleureau, J., Garreau, M., Hernández, A., Simon, A., and Boulmier, D. (2006). Multi-object and N-D segmentation of cardiac MSCT data using SVM classifiers and a connectivity algorithm. In Computers in Cardiology, pages 817-820.
  13. Fu, K. S. and Mui, J. K. (1981). A survey on image segmentation. Pattern Recog., 13(1):3-16.
  14. Fuchs, T., Kachelriess, M., and Kalender, W. (2000). Systems performance multislice spiral computed tomography. IEEE Eng. Med. Biol. Mag., 19(5):63-70.
  15. Haralick, R. A. and Shapiro, L. (1992). Computer and Robot Vision, volume I. Addison-Wesley, USA.
  16. Kervrann, C. and Heitz, F. (1999). Statistical deformable model-based segmentation of image motion. IEEE Trans. Image Processing, 8(4):583-588.
  17. Lynch, M., Ghita, O., and Whelan, P. (2008). Segmentation of the left ventricle of the heart in 3-D+t MRI data using an optimized nonrigid temporal model. IEEE Trans. Med. Imag., 27(2):195-203.
  18. Mitchell, S., Lelieveldt, B., van der Geest, R., Bosch, H., Reiber, J., and Sonka, M. (2001). Multistage hybrid active appearance model matching: Segmentation of left and right ventricles in cardiac MR images. IEEE Trans. Med. Imag., 20(5):415-423.
  19. Nelson, T. R. and Elvins, T. T. (1993). Visualization of 3D ultrasound data. IEEE Comput. Graph. Appl., 13(6):50-57.
  20. Oost, E., Koning, G., Sonka, M., Oemrawsingh, P. V., Reiber, J. H. C., and Lelieveldt, B. P. F. (2006). Automated contour detection in X-ray left ventricular angiograms using multiview active appearance models and dynamic programming. IEEE Trans. Med. Imag., 25(9):1158-1171.
  21. Rabit, O. (2000). Quantitative analysis of cardiac function. In Bankman, I. N., editor, Handbook of Medical Imaging: Processing and Analysis, pages 359-374. Academic Press, San Diego.
  22. Salomon, D. (1999). Computer Graphics and Geometric Modeling. Springer Verlag, New York.
  23. Schroeder, W., Martin, K., and Lorensen, B. (2001). The Visualization Toolkit, An Object-Oriented Approach to 3D Graphics. Prentice Hall, New York.
  24. Serra, J. (1982). Image Analysis and Mathematical Morphology. A Press, London.
  25. Suzuki, K., Horiba, I., Sugie, N., and Nanki, M. (2004). Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector. IEEE Trans. Med. Imag., 23(3):330-339.
  26. WHO (2002a). Integrated management of cardiovascular risk. The World Health Report 2002 Geneva, World Health Organization.
  27. WHO (2002b). Reducing risk and promoting healthy life. The World Health Report 2002 Geneva, World Health Organization.

Paper Citation

in Harvard Style

Bravo A., Clemente J., Vera M., Avila J. and Medina R. (2010). A HYBRID BOUNDARY–REGION LEFT VENTRICLE SEGMENTATION IN COMPUTED TOMOGRAPHY . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-029-0, pages 107-114. DOI: 10.5220/0002849301070114

in Bibtex Style

author={Antonio Bravo and José Clemente and Miguel Vera and José Avila and Rubén Medina},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)},

in EndNote Style

JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)
SN - 978-989-674-029-0
AU - Bravo A.
AU - Clemente J.
AU - Vera M.
AU - Avila J.
AU - Medina R.
PY - 2010
SP - 107
EP - 114
DO - 10.5220/0002849301070114