3D VISUALIZATION AND VIRTUAL REALITY FOR VISUAL DATA MINING - A Survey

Zohra Ben Said, Fabrice Guillet, Paul Richard

Abstract

Visual Data Mining (VDM) aims at an easier interpretation of data mining algorithm results through the use of visualization techniques. During the last decade, many techniques of information visualization have been proposed, allowing visualization of multidimensional data. Previously, ((Chi, 2000), (Herman et al., 2000)) attempted to classify VDM techniques . However, these taxonomies do not take into account some innovative techniques based on 3D visualization and virtual environments (VEs). In this paper, we propose an exhaustive survey of recent techniques for VDM. These different techniques are detailed, classified and compared according to the following criteria : graphical encoding, interaction techniques and applications. Moreover, they are presented in tables together with graphical illustrations.

References

  1. Azzag, H., Picarougne, F., Guinot, C., and Venturini, G. (2005). Vrminer: a tool for multimedia databases mining with virtual reality. Processing and Managing Complex Data for Decision Support, pages 318-339.
  2. Becker, B. (1997). Volume rendering for relational data. IEEE Symposium on Information Visualization.
  3. Blanchard, J., Pinaud, B., Kuntz, P., and Guillet, F. (2007). Visual analytics: A 2d-3d visualization support for human-centered rule mining. Computers and Graphics, 31(3):350-360.
  4. Bosca, A., Bonino, D., Comerio, M., Grega, S., and Corno, F. (2007). A reusable 3d visualization component for the semantic web. In Web3D 7807: Proceedings of the twelfth international conference on 3D web technology, pages 89-96. ACM Press.
  5. Bovbjerg, S., Granum, E., Nagel, H. R., and Vittrup, M. (2003). Using dynamic soundscapes to support visual data mining in vr. In Simeon J. Simoff, Monique Noirhomme-Fraiture, M. H. B. and Ankerst, M. I., editors, Third International Workshop on Visual Data Mining in conjunction with ICDM 2003 - The Third IEEE International Conference on Data Mining, pages 167-182.
  6. Buntain, C. (2008). 3d ontology visualization in semantic search. In Proceedings of the 46th Annual Southeast Regional Conference on ACM Southeast Regional Conference, pages 204-208. ACM Press.
  7. Card, S. K., Mackinlay, J. D., and Schneiderman, B. (1999). Readings in information visualization : using vision to think. Morgan Kaufmann publishers, San Francisco CA, ETATS-UNIS (Monographie).
  8. Chi, E. H. (2000). A taxonomy of visualization techniques using the data state reference model. In INFOVIS 7800: Proceedings of the IEEE Symposium on Information Vizualization, pages 69-75. IEEE Computer Society Press.
  9. Couturier, O., Hamrouni, T., Yahia, S. B., and Nguifo, E. M. (2007). A scalable association rule visualization towards displaying large amounts of knowledge. In IV 7807: Proceedings of the 11th International Conference Information Visualization, pages 657-663. IEEE Computer Society Press.
  10. Doleisch, H., Mayer, M., Gasser, M., Priesching, P., and Hauser, H. (2005). Interactive feature specification for simulation data on time-varying grids. In Conference on Simulation and Visualization, pages 291-304. SCS Publishing House e.V.
  11. Elmqvist, N., Assarsson, U., and Tsigas, P. (2009). Dynamic transparency for 3d visualization : Design and evaluation. The International Journal of Virtual Reality, 8(1):75-88.
  12. Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. (1996). Advances in knowledge discovery and data mining. American Association for Artificial Intelligence.
  13. Furnas, G. W. (1986). Generalized fisheye views. In CHI 7886: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 16-23. ACM Press.
  14. Gresh, D. L., Rogowitz, B. E., Winslow, R. L., Scollan, D. F., and Yung, C. K. (2000). Weave: a system for visually linking 3-d and statistical visualizations, applied to cardiac simulation and measurement data. In Proceedings of the conference on Visualization 7800, pages 489-492. IEEE Computer Society Press.
  15. Gtzelmann, T., Hartmann, K., Nrnberger, A., and Strothotte, T. (2007). 3d spatial data mining on document sets for the discovery of failure causes in complex technical devices. In GRAPP'07 : Proceedings of the Second International Conference on Computer Graphics Theory and Applications, pages 137-145. INSTICC - Institute for Systems and Technologies of Information, Control and Communication.
  16. Ham, F. V. and Wijk, J. V. (2003). Beamtrees: compact visualization of large hierarchies. Information Visualization, 2(1):93-100.
  17. Herman, I., Melancon, G., and Marshall, M. S. (2000). Graph visualization and navigation in information visualization: A survey. IEEE Transactions on Visualization and Computer Graphics, 6(1):24-43.
  18. Jacquemin, C. and Jardino, M. (2002). Une interface 3d multi-échelle pour la visualisation et la navigation dans de grands documents xml. In IHM 7802: Proceedings of the 14th French-speaking conference on Human-computer interaction (Conférence Francophone sur l'Interaction Homme-Machine), pages 263-266. ACM Press.
  19. Johnson, B. and Shneiderman, B. (1991). Tree-maps: a space-filling approach to the visualization of hierarchical information structures. In VIS 7891: Proceedings of the 2nd conference on Visualization 7891, pages 284-291. IEEE Computer Society Press.
  20. Keim, D. A., Mansmann, F., Schneidewind, J., Thomas, J., and Ziegler, H. (2008). Visual Analytics: Scope and Challenges. Springer-Verlag, Berlin, Heidelberg.
  21. Krohn, U. (1996). Vineta: navigation through virtual information spaces. In AVI'96 : Proceedings of the workshop on Advanced visual interfaces, pages 49- 58. ACM Press.
  22. Maletic, J. I., Marcus, A., and Feng, L. (2003). Source viewer 3d (sv3d): a framework for software visualization. In ICSE'03 : Proceedings of 25th ACM/IEEE International Conference on Software Engineering, pages 812-813. IEEE Computer Society Press.
  23. Marroqun, V. D., Brault, J. J., and Hart, B. S. (2008). A visual data-mining methodology for seismic facies analysis: Part 2 - application to 3d seismic data. GEOPHYSICS, 74(1):13-23.
  24. Mroz, L. and Hauser, H. (2001). Rtvr: a flexible java library for interactive volume rendering. In VISUALIZATION'01 : Proceedings of the Conference on Visualization, pages 279-286. IEEE Computer Society Press.
  25. Paulovich, F. V., Oliveira, M. C. F., and Minghim, R. (2007). The projection explorer: A flexible tool for projection-based multidimensional visualization. In SIBGRAPI'07 : Proceedings of the Brazilian Symposium on Computer Graphics and Image Processing, pages 27-36. IEEE Computer Society Press.
  26. Robertson, G., Czerwinski, M., Larson, K., Robbins, D. C., Thiel, D., and van Dantzich, M. (1998). Data mountain: using spatial memory for document management. In Proceedings of the 11th annual ACM symposium on User interface software and technology, pages 153-162. ACM Press.
  27. Robertson, G. G., Mackinlay, J. D., and Card, S. K. (1991). Cone trees: animated 3d visualizations of hierarchical information. In CHI 7891 : Proceedings of the SIGCHI conference on Human factors in computing systems: Reaching through technology, pages 189-194. ACM Press.
  28. Schreck, T., Tekus?ová, T., Kohlhammer, J., and Fellner, D. (2007). Trajectory-based visual analysis of large financial time series data. ACM SIGKDD Explorations Newsletter, 9(2):30-37.
  29. Simoff, S. (2001). Towards the development of environments for designing visualisation support for visual data mining. In Proceedings International Workshop on Visual Data Mining, pages 93-106. Simeon J. Simoff, Monique Noirhomme-Fraiture, Michael H. Bhlen and Mihael I. Ankerst.
  30. Tee, S., J, T. T., kelly Kwan-liu Ma, J., and Wu, S. F. (2004). Visual data analysis for detecting flaws and intruders in computer network systems. IEEE Computer Graphics and Applications, special issue on Visual Analytics, 24(5):27-25.
  31. van de Wetering Kleiberg, E. and van Wijk, J. (2001). Botanical visualization of huge hierarchies. In NFOVIS 7801: Proceedings of the IEEE Symposium on Information Visualization 2001, pages 87-94. IEEE Computer Society.
  32. Wang, L., Zhao, Y., Mueller, K., and Kaufman, A. (2005). The magic volume lens: An interactive focus+context technique for volume rendering. In VIS 05 : Proceding of 16th IEEE Visualization, pages 367-374. IEEE Computer Society Press.
  33. Wang, Y.-S., Lee, T.-Y., and Tai, C.-L. (2008). Focus+context visualization with distortion minimization. IEEE Transactions on Visualization and Computer Graphics, 14(6):1731-1738.
Download


Paper Citation


in Harvard Style

Ben Said Z., Guillet F. and Richard P. (2010). 3D VISUALIZATION AND VIRTUAL REALITY FOR VISUAL DATA MINING - A Survey . In Proceedings of the International Conference on Imaging Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2010) ISBN 978-989-674-027-6, pages 140-145. DOI: 10.5220/0002850801400145


in Bibtex Style

@conference{ivapp10,
author={Zohra Ben Said and Fabrice Guillet and Paul Richard},
title={3D VISUALIZATION AND VIRTUAL REALITY FOR VISUAL DATA MINING - A Survey},
booktitle={Proceedings of the International Conference on Imaging Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2010)},
year={2010},
pages={140-145},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002850801400145},
isbn={978-989-674-027-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Imaging Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2010)
TI - 3D VISUALIZATION AND VIRTUAL REALITY FOR VISUAL DATA MINING - A Survey
SN - 978-989-674-027-6
AU - Ben Said Z.
AU - Guillet F.
AU - Richard P.
PY - 2010
SP - 140
EP - 145
DO - 10.5220/0002850801400145