ROBUST MULTIMODAL BIOMETRIC SYSTEM USING MARKOV CHAIN BASED RANK LEVEL FUSION

Maruf Monwar, Marina Gavrilova

Abstract

Multimodal biometrics is an emerging area of pattern recognition research that aims at increasing the reliability of biometric systems through utilizing more than one biometric in decision-making process. But an effective fusion scheme is necessary for combining information from various sources. Such information can be integrated at several distinct levels, such as sensor level, feature level, match score level, rank level and decision level. In this research, we develop a multimodal biometric system utilizing face, iris and ear features through rank level fusion method. We apply Fisherimage technique on face and ear image databases for recognition and Hough transform and Hamming distance techniques for iris image recognition. We introduce Markov chain approach for biometric rank aggregation. We investigate various rank fusion techniques and observe that Markov chain approach gives us the best result. Also this approach satisfies the Condorcet criterion which is essential in any fair rank aggregation system. The system can be effectively used by of security and intelligence services for controlling access to prohibited areas and protecting important national or public information.

References

  1. Agresti, A., 2007. An introduction to categorical data analysis. Wiley-Interscience, 2nd edition.
  2. Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. J., 1997. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pages 711-720.
  3. Bhatnagar, J., Kumar, A., and Saggar, N., 2007. A novel approach to improve biometric recognition using rank level fusion. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages 1-6, Minneapolis, USA.
  4. Borda, J. C., 1781. Memoire sur les elections au scrutin. Histoire de l'Academie Royale des Sciences, France.
  5. Bubeck, U. M., 2003. Multibiometric authentication - An overview of recent developments. San Diego University. http://www.thuktun.org/cs574/papers/multibiometrics. pdf
  6. CASIA: CASIA iris image database, 2004. Retrieved on May 23, 2008. www.sinobiometrics.com
  7. Chandran, J. G. C., and Rajesh, R. S., 2009. Performance analysis of multimodal biometric system authentication. IJCSNS International Journal of Computer Science and Network Security, vol. 9, no.3,
  8. pages 290-296.
  9. Condorcet, M.-J., 1785. Óssai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité desvoix.
  10. Copeland, H., 1951. A reasonable social welfare function. Mimeo, University of Michigan, USA.
  11. Daugman, J. G., 2004. How iris recognition works. IEEE Transaction on Circuits and Systems for Video Technology, vol. 14, no. 1, pages 21-30.
  12. Dunstone, T., and Yager, N., 2009. Biometric system and data analysis: Design, evaluation, and data mining. Springer, New York.
  13. Dwork, C., Kumar, R., Naor, M., and Sivakumar, D., 2001. Rank aggregation methods for the web. In Proc. of 10th International World Wide Web Conference, pages 613-622, Hong Kong, China.
  14. Ho, T. K., Hull. J. J., and Srihari, S. N., 1994. Decision combination in multiple classifier systems. IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 16, no. 1, pages 66-75.
  15. Kim, J., Cho, S., Kim, D., and Chung, S.-T., 2006. Iris recognition using a low level of details. Lecture Notes in Computer Science, vol. 4292, pages 196-204, Springer.
  16. Maio, D., Maltoni, D., Cappelli, R., Wayman, J. L., and Jain, A. K., 2004. In Proc. International Conference on Biometric Authentication, pages 1-7, Hong Kong, China.
  17. Monwar, M. M., and Gavrilova, M., 2009. A Multimodal Biometric System using Rank Level Fusion Approach. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics (special issue on Cognitive Informatics and Cybernetics), vol. 39, no. 4, pages 867-878.
  18. Nandakumar, K., Jain, A.K., and Ross A., 2009. Fusion in multibiometric identification systems: What about the missing data? In M. Tistarelli and M.S. Nixon, Editors, International Conference on Biometrics, vol. LNCS 5558, pages 743-752, Springer.
  19. Phillips, P. J., Moon, H., and Rauss, P., 1998. The FERET database and evaluation procedure for face recognition algorithms. Image and Vision Computing, vol. 16. no. 5, pages 295-306.
  20. Revett, K., 2008. Behavioral biometrics: A remote access approach. Wiley, West Sussex, UK.
  21. Ross, A., Nandakumar, K., and Jain, A. K., 2006. Handbook of multibiometrics. Springer, New York.
  22. Turk, M., and Pentland, A., 1991. Eigenfaces for recognition. Journal of Cognitive Science, pages 71- 86.
  23. USTB ear database, China. Retrieved on May 11, 2008. http://www.ustb.edu.cn/resb/
  24. Wildes, R., 1997. Iris recognition: An emerging biometric technology. In Proc. IEEE, vol. 85, no. 9, pages 1348- 1363.
  25. Zhao, W., Chellappa, R., and Nandhakumar, N., 1998. Empirical performance analysis of linear discriminant classifiers. In Proc. 1998 Conference on Computer Vision and Pattern Recognition, pages 164-169, Santa Barbara, CA.
Download


Paper Citation


in Harvard Style

Monwar M. and Gavrilova M. (2010). ROBUST MULTIMODAL BIOMETRIC SYSTEM USING MARKOV CHAIN BASED RANK LEVEL FUSION . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-029-0, pages 458-463. DOI: 10.5220/0002851404580463


in Bibtex Style

@conference{visapp10,
author={Maruf Monwar and Marina Gavrilova},
title={ROBUST MULTIMODAL BIOMETRIC SYSTEM USING MARKOV CHAIN BASED RANK LEVEL FUSION},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={458-463},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002851404580463},
isbn={978-989-674-029-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)
TI - ROBUST MULTIMODAL BIOMETRIC SYSTEM USING MARKOV CHAIN BASED RANK LEVEL FUSION
SN - 978-989-674-029-0
AU - Monwar M.
AU - Gavrilova M.
PY - 2010
SP - 458
EP - 463
DO - 10.5220/0002851404580463