POSITION ESTIMATION OF MOBILE ROBOTS CONSIDERING CHARACTERISTIC TERRAIN PROPERTIES

Michael Brunner, Dirk Schulz, Armin B. Cremers

Abstract

Due to the varying terrain conditions in outdoor scenarios the kinematics of mobile robots is much more complex compared to indoor environments. In this paper we present an approach to predict future positions of mobile robots which considers the current terrain. Our approach uses Gaussian process regression (GPR) models to estimate future robot positions. An unscented Kalman filter (UKF) is used to project the uncertainties of the GPR estimates into the position space. The approach utilizes optimized terrain models for estimation. To decide which model to apply, a terrain classification is implemented using Gaussian process classification (GPC) models. The transitions between terrains are modeled by a 2-step Bayesian filter (BF). This allows us to assign different probabilities to distinct terrain sequences, while taking the properties of the classifier into account and coping with false classifications. Experiments showed the approach to produce better estimates than approaches considering only a single terrain model and to be competitive to other dynamic approaches.

References

  1. Agrawal, M. and Konolige, K. (2006). Real-time localization in outdoor environments using stereo vision and inexpensive GPS. In International Conference on Pattern Recognition (ICPR), volume 3, pages 1063-1068.
  2. Brooks, C. A., Iagnemma, K., and Dubowsky, S. (2005). Vibration-based terrain analysis for mobile robots. In IEEE International Conference on Robotics and Automation (ICRA), pages 3415-3420.
  3. Burgard, W., Fox, D., Hennig, D., and Schmidt, T. (1996). Estimating the absolute position of a mobile robot using position probability grids. In AAAI National Conference on Artificial Intelligence, volume 2.
  4. Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.
  5. Dahlkamp, H., Kaehler, A., Stavens, D., Thrun, S., and Bradski, G. R. (2006). Self-supervised monocular road detection in desert terrain. In Robotics: Science and Systems.
  6. Ferris, B., Hähnel, D., and Fox, D. (2006). Gaussian processes for signal strength-based location estimation. In Robotics: Science and Systems.
  7. Girard, A., Rasmussen, C. E., Quinonero-Candela, J., and Murray-Smith, R. (2003). Gaussian process priors with uncertain inputs - Application to multiple-step ahead time series forecasting. In Advances in Neural Information Processing Systems (NIPS), pages 529- 536.
  8. Iagnemma, K. and Ward, C. C. (2009). Classificationbased wheel slip detection and detector fusion for mobile robots on outdoor terrain. Autonomous Robots, 26(1):33-46.
  9. Kapoor, A., Grauman, K., Urtasun, R., and Darrell, T. (2007). Active learning with gaussian processes for object categorization. In IEEE International Conference on Computer Vision (ICCV), volume 11, pages 1-8.
  10. Ko, J., Klein, D. J., Fox, D., and Hähnel, D. (2007a). Gaussian processes and reinforcement learning for identification and control of an autonomous blimp. In IEEE International Conference on Robotics and Automation (ICRA), pages 742-747.
  11. Ko, J., Klein, D. J., Fox, D., and Hähnel, D. (2007b). GPUKF: Unscented Kalman filters with gaussian process prediction and observationmodels. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1901-1907.
  12. Li-Juan, L., Hong-Ye, S., and Jian, C. (2007). Generalized predictive control with online least squares support vector machines. In Acta Automatica Sinica (AAS), volume 33, pages 1182-1188.
  13. MacKay, D. J. C. (1998). Introduction to gaussian processes. In Bishop, C. M., editor, Neural Networks and Machine Learning, NATO ASI Series, pages 133- 166. Springer-Verlag.
  14. Rasmussen, C. E. (2002). Combining laser range, color, and texture cues for autonomous road following. In IEEE International Conference on Robotics and Automation (ICRA).
  15. Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian Processes for Machine Learning. The MIT Press.
  16. Seyr, M., Jakubek, S., and Novak, G. (2005). Neural network predictive trajectory tracking of an autonomous two-wheeled mobile robot. In International Federation of Automatic Control (IFAC) World Congress.
  17. Thrun, S., Fox, D., Burgard, W., and Dellaert, F. (2000). Robust monte carlo localization for mobile robot. Artificial Intelligence, 128:99-141.
  18. Urtasun, R. and Darrell, T. (2007). Discriminative gaussian process latent variable models for classification. In International Conference on Machine Learning (ICML).
  19. Ward, C. C. and Iagnemma, K. (2007). Model-based wheel slip detection for outdoor mobile robots. In IEEE International Conference on Robotics and Automation (ICRA), pages 2724-2729.
  20. Weiss, C., Frö hlich, H., and Zell, A. (2006). Vibrationbased terrain classification using support vector machines. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 4429- 4434.
  21. Williams, C. K. I. (2002). Gaussian processes. In The Handbook of Brain Theory and Neural Networks. The MIT Press, 2 edition.
Download


Paper Citation


in Harvard Style

Brunner M., Schulz D. and B. Cremers A. (2010). POSITION ESTIMATION OF MOBILE ROBOTS CONSIDERING CHARACTERISTIC TERRAIN PROPERTIES . In Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8425-01-0, pages 5-14. DOI: 10.5220/0002880200050014


in Bibtex Style

@conference{icinco10,
author={Michael Brunner and Dirk Schulz and Armin B. Cremers},
title={POSITION ESTIMATION OF MOBILE ROBOTS CONSIDERING CHARACTERISTIC TERRAIN PROPERTIES},
booktitle={Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2010},
pages={5-14},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002880200050014},
isbn={978-989-8425-01-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - POSITION ESTIMATION OF MOBILE ROBOTS CONSIDERING CHARACTERISTIC TERRAIN PROPERTIES
SN - 978-989-8425-01-0
AU - Brunner M.
AU - Schulz D.
AU - B. Cremers A.
PY - 2010
SP - 5
EP - 14
DO - 10.5220/0002880200050014