NEW PROPOSAL FOR A MULTI-OBJECTIVE TECHNIQUE USING TRIBES AND TABU SEARCH

Nadia Smairi, Sadok Bouamama, Khaled Ghedira, Patrick Siarry

Abstract

The aim of this paper is to present a new multi-objective technique which consists on a hybridization between a particle swarm optimization approach (Tribes) and tabu search technique. The main idea of the approach is to combine the high convergence rate of Tribes with a local search technique based on Tabu Search. Besides, in our study, we proposed different places to apply local search: the archive, the best particle among each tribe and each particle of the swarm. As a result of our study, we present three versions of our hybridized algorithm. The mechanisms proposed are validated using twelve different functions from specialized literature of multi-objective optimization. The obtained results show that using this kind of hybridization is justified as it is able to improve the quality of the solutions in the majority of cases.

References

  1. Bartz-Beielstein, T., Limbourg, P., Parsopoulos, K.E., Vrahatis, M.N., Mehnen, J., and Shmitt, K. (2003, December). Particle Swarm Optimizers for Pareto Optimization with Enhanced Archiving Techniques. In congress on Evolutionary Computation Canberra, Australia, IEEE Press, Vol. 3, 1780-1787.
  2. Bergh, F. (2002). An Analysis of Particle Swarm Optimizers. PhD thesis, Departement of Computer Science, University of Pretoria, Pretoria, South Africa.
  3. Carlos, A. and Coello, C.A.C. (2000, June). An Updated Survey of GA-Based Multiobjective Optimization Techniques. ACM Computing Surveys, Vol. 32, No. 2.
  4. Chelouah, R. and Siarry, P. (2000). Tabu Search applied to global optimization. European Journal of Operational Research 123, 256-270.
  5. Clerc, M. (2006). Particle Swarm Optimization. International Scientific and Technical Encyclopaedia, John Wiley & sons.
  6. Coello, C.A.C and Lechuga, M.S. (2002, May). MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization. Congress on Evolutionary Computation (CEC'2002), IEEE Service Center, Piscataway, New Jersey, Vol. 2, 1051-1056.
  7. Cooren, Y. (2008). Perfectionnement d'un algorithme adaptatif d'optimisation par essaim particulaire. Applications en génie médicale et en électronique. PhD thesis, Université Paris 12.
  8. Coello, C.A.C., Pulido, G.T. and Lechuga, M.S. (2004, June). Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 256-279.
  9. Hu, X., Eberhart, R. and Shi, Y. (2003). Particle swarm with Extended Memory for multi-objective Optimization. In IEEE Swarm Intelligence Symposium.
  10. Knowles, J., Thiele, L. and Zitler, E. (2006, February). A tutorial on the Performance Assessement of Stochastic Multi-objective Optimizers. Tik-Report No-214, Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland.
  11. Moore, J. and Chapman, R. (1999). Application of particle swarm to multiobjective optimization. Departement of Computer Science and Software Engineering, Auburn University.
  12. Parsopoulos, K.E., Tasoulis, D.K. and Vrahatis, M.N. (2004, February). Multiobjective optimization using parallel vector evaluated particle swarm optimization. In Proceedings of the IASTED International Conference on Artificial Intelligence and Applications (AIA 2004), Innsbruck, Austria, ACTA Press, Vol. 2, 823-828.
  13. Parsopoulos, K.E. and Vrahatis, M.N. (2002). Particle Swarm Optimization Method in Multi-objective Problems. Proceedings of the ACM 2002 Symposium on Applied Computing (SAC'2002), 603-607.
  14. Quintero, L.V.S., Santiago, N.R. and Coello, C.A.C. (2008). Towards a More efficent Multi-objective Particle Swarm Optimizer. Multi-objective Optimization in computational intelligence: Theory and practice, Information Science Reference, Hershey, USA, In Lam Thu Bui and Sameer Alam (editors), 76-105.
  15. Ray, T. and Liew, K.M. (2002, March). A swarm metaphor for multiobjective design optimization. Engineering Optimization, 34(2), 142-153.
  16. Sierra, M.R. and Coello, C.A.C. (2005). Improving PSObased multi-objective optimization using crowding, mutation and e-dominance. In third International Conference on Evolutionary Multi-Criterion Optimization, Guanajuata, Mexico, LNCS 3410, Springer-verlag, 505-519.
  17. Sierra, M.R. and Coello, C.A.C. (2007). A study of techniques to improve the efficiency of a multiobjective particle swarm optimizer. Evolutionary Computation in Dynamic and Uncertain Environments, Springer, 269-296.
  18. Zitzler, E. and Deb, K. (2007, July). Tutorial on Evolutionary Multiobjective Optimization. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'07), London, United Kingdom.
Download


Paper Citation


in Harvard Style

Smairi N., Bouamama S., Ghedira K. and Siarry P. (2010). NEW PROPOSAL FOR A MULTI-OBJECTIVE TECHNIQUE USING TRIBES AND TABU SEARCH . In Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8425-00-3, pages 86-91. DOI: 10.5220/0002881900860091


in Bibtex Style

@conference{icinco10,
author={Nadia Smairi and Sadok Bouamama and Khaled Ghedira and Patrick Siarry},
title={NEW PROPOSAL FOR A MULTI-OBJECTIVE TECHNIQUE USING TRIBES AND TABU SEARCH},
booktitle={Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2010},
pages={86-91},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002881900860091},
isbn={978-989-8425-00-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - NEW PROPOSAL FOR A MULTI-OBJECTIVE TECHNIQUE USING TRIBES AND TABU SEARCH
SN - 978-989-8425-00-3
AU - Smairi N.
AU - Bouamama S.
AU - Ghedira K.
AU - Siarry P.
PY - 2010
SP - 86
EP - 91
DO - 10.5220/0002881900860091