A REVIEW OF LEARNING METHODS ENHANCED IN STRATEGIES OF NEGOTIATING AGENTS

Marisa Masvoula, Panagiotis Kanellis, Drakoulis Martakos

Abstract

Advancement of Artificial Intelligence has contributed in the enhancement of agent strategies with learning techniques. We provide an overview of learning methods that form the core of state-of-the art negotiators. The main objective is to facilitate the comprehension of the domain by framing current systems with respect to learning objectives and phases of application. We also aim to reveal current trends, virtues and weaknesses of applied methods.

References

  1. Albesano, D., Gemello, R. Laface, P., Mana, F., Scanzio. S. (2006) Adaptation of Artificial Neural Networks Avoiding Catastrophic Forgetting. In Proceedings of the International Joint Conference on Neural Networks, IJCNN 2006 (pp. 1554-1561).
  2. Air Force Research Laboratory. (2003). A Case-based Reflective Negotiation Model.
  3. Braun, P., Brzostowski, J., Kersten, G., Kim, J., Kowalczyk, R., Stecker, S., Vahidov, R.(2006). eNegotiation Systems and Software Agents: Methods, Models, and Applications. In Jatinder N. D. G., Guisseppi A. F. and Manuel M. T. (Eds.), Intelligent decision-making support systems: Foundations, Applications and Challenges, (pp. 271-300). London: Springer
  4. Brzostowski, J. and Kowalczyk, R. (2005). On possibilistic case-based reasoning for selecting partners for multi-attribute agent negotiation. In Proceedings of the Fourth international Joint Conference on Autonomous Agents and Multiagent Systems (pp. 273-279). New York: ACM
  5. Brzostowski, J. and Kowalczyk, R. (2006a). Adaptive Negotiation with On-Line Prediction of Opponent Behaviour in Agent-Based Negotiations. In Proceedings of the IEEE/WIC/ACM international Conference on intelligent Agent Technology (pp. 263- 269). Washington, DC: IEEE Computer Society.
  6. Brzostowski, J. and Kowalczyk, R. (2006b). Predicting partner's behaviour in agent negotiation. In Proceedings of the Fifth international Joint Conference on Autonomous Agents and Multiagent Systems (pp. 355-361). New York: ACM.
  7. Busoniu, L., Babuska, R., De Shutter, B. (2008). A Comprehensive Survey of Multiagent Reinforcement Learning. IEEE Transactions on Systems, Man and Cybernetics, 38(2), 156-172.
  8. Bui, H. H., Venkatesh, S. and Kieronska, D. (1999). Learning other agents' preferences in multi-agent negotiation using the Bayesian classifier. International Journal of Cooperative Information Systems, 8(4), 275-294.
  9. Buffett, S. and Spencer, B. (2007). A Bayesian classifier for learning opponents' preferences in multi-object automated negotiation. Electronic Commerce Research and Applications, 6(3), 274-284
  10. Carbonneau, R., Kersten, G. E., and Vahidov, R. (2008). Predicting opponent's moves in electronic negotiations using neural networks. Expert Systems with Applications: An International Journal, 34 (2), 1266- 1273.
  11. Cardoso, H. L. and Oliveira, E. (2000). Using and Evaluating Adaptive Agents for Electronic Commerce Negotiation. In M. C. Monard and J. S. Sichman (Eds.), Proceedings of the international Joint Conference, 7th Ibero-American Conference on Ai: Advances in Artificial intelligence (pp. 96-105). London: Springer-Verlag.
  12. Faratin, P., Sierra, C. and Jennings, N. R. (1998). Negotiation Decision Functions for Autonomous Agents. Int. Journal of Robotics and Autonomous Systems, 24 (3 - 4), 159-182.
  13. Gerding, E. H., van Bragt, D. D. and La Poutre, J. A. (2000). Multi-Issue Negotiation processes by Evolutionary Simulation: Validation and Social Extensions. Technical Report. UMI Order Number: SEN-R0024., CWI (Centre for Mathematics and Computer Science).
  14. Hou, C. (2004). Predicting Agents Tactics in Automated Negotiation. In Proceedings of the intelligent Agent Technology, IEEE/WIC/ACM international Conference (pp. 127-133). Washington, DC : IEEE Computer Society.
  15. Kersten, G. E and Lai, H. (2007). Negotiation Support and E-negotiation Systems: An Overview. Group Decision and Negotiation, 16(6), 553-586.
  16. Lau, R. Y. (2005). Adaptive negotiation agents for ebusiness. In Proceedings of the 7th international Conference on Electronic Commerce (pp. 271-278). New York: ACM.
  17. Lee, C. C. and Ou-Yang, C. (2009). A neural networks approach for forecasting the supplier's bid prices in supplier selection negotiation process. Expert Systems with Applications, 36(2), 2961-2970.
  18. Li, C., Giampapa, J., and Sycara, K. (2004). Bilateral Negotiation Decisions with Uncertain Dynamic Outside Options. In Proceedings of the First IEEE international Workshop on Electronic Contracting (pp. 54-61). Washington, DC: IEEE Computer Society.
  19. Matos, N., Sierra, C., and Jennings, N. (1998). Determining Successful Negotiation Strategies: An Evolutionary Approach. In Proceedings of the 3rd international Conference on Multi Agent Systems (pp. 182-189). Washington, DC: IEEE Computer Society.
  20. Nelson, R.R and Winter, S. G. (1982). An Evolutionary theory of economic change. Cambridge, MA and London: The Belknap Press of Harvard University Press.
  21. Oliveira, E. and Rocha A. P. (2001). Agents Advanced Features for Negotiation in Electronic Commerce and Virtual Organizations Formation Process. In F Dignum and C Sierra, (Eds.), Agent Mediated Electronic Commerce, the European AgentLink Perspective (pp.77-97). Heidelberg: Springer Berlin
  22. Oliver, J. R. (1996). A machine-learning approach to automated negotiation and prospects for electronic commerce. J. Manage. Inf. Syst., 13 (3), 83-112.
  23. Oprea, M. (2003) The Use of Adaptive Negotiation by a Shopping Agent in Agent-Mediated Electronic Commerce. In: Proceedings of the 3rd International Central and Eastern European Conference on MultiAgent Systems, CEEMAS03. (pp. 594-605). Heidelberg: Springer Berlin.
  24. Papaioannou, I. V., Roussaki, I. G., and Anagnostou, M. E. (2006). Comparing the Performance of MLP and RBF Neural Networks Employed by Negotiating Intelligent Agents. In Proceedings of the IEEE/WIC/ACM international Conference on intelligent Agent Technology (602-612). Washington, DC: IEEE Computer Society.
  25. Papaioannou, I., Roussaki, I., and Anagnostou, M. (2008). Detecting Unsuccessful Automated Negotiation Threads When Opponents Employ Hybrid Strategies. In D. Huang, D. C. Wunsch, D. S. Levine, and K. Jo, (Eds.), Proceedings of the 4th international Conference on intelligent Computing (pp. 27-39). Heidelberg: Springer Berlin.
  26. Raiffa, H. (1982). The Art and Science of Negotiation. Cambridge, MA and London: The Belknap Press
  27. Rau, H., Tsai, M., Chen, C., and Shiang, W. (2006). Learning-based automated negotiation between shipper and forwarder. Comput. Ind. Eng., 51( 3), 464- 481
  28. Robinson, W. N and Volkov, V. (1998). Supporting the negotiation life cycle. Communications of the ACM, 41(5), 95-102.
  29. Van Bragt, D. D. and La Poutré, J. A. (2003). Why Agents for Automated Negotiations Should Be Adaptive. Netnomics, 5(2), 101-118.
  30. Wong, Y. W., Zhang, D. M., and Kara-Ali, M. (2000). Negotiating with Experience. Knowledge-Based Electronic Markets, Papers from the AAAI Workshop, Technical Report. AAAI Press
  31. Zeng, D. and Sycara, K. (1998). Bayesian learning in negotiation. Int. J. Hum.-Comput. Stud., 48(1), 125- 141.
  32. 1. Reach optimal strategy 
  33. 2. Analyze negotiation interactions 
  34. 1. Decision making shortcuts in state  transitions, related to concessions 
  35. 2. Generation of arguments in  argumentative negotiations  
Download


Paper Citation


in Harvard Style

Masvoula M., Kanellis P. and Martakos D. (2010). A REVIEW OF LEARNING METHODS ENHANCED IN STRATEGIES OF NEGOTIATING AGENTS . In Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-8425-05-8, pages 212-219. DOI: 10.5220/0002897102120219


in Bibtex Style

@conference{iceis10,
author={Marisa Masvoula and Panagiotis Kanellis and Drakoulis Martakos},
title={A REVIEW OF LEARNING METHODS ENHANCED IN STRATEGIES OF NEGOTIATING AGENTS},
booktitle={Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2010},
pages={212-219},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002897102120219},
isbn={978-989-8425-05-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - A REVIEW OF LEARNING METHODS ENHANCED IN STRATEGIES OF NEGOTIATING AGENTS
SN - 978-989-8425-05-8
AU - Masvoula M.
AU - Kanellis P.
AU - Martakos D.
PY - 2010
SP - 212
EP - 219
DO - 10.5220/0002897102120219