IMAGE MOTION ESTIMATION USING OPTIMAL FLOW CONTROL

Annette Stahl, Ole Morten Aamo

Abstract

In this paper we present an optimal control approach for image motion estimation in an explorative and novel way. The variational formulation incorporates physical prior knowledge by giving preference to motion fields that satisfy appropriate equations of motion. Although the framework presented is flexible, we employ the Burgers equation from fluid mechanics as physical prior knowledge in this study. Our control based formulation evaluates entire spatio-temporal image sequences of moving objects. In order to explore the capability of the algorithm to obtain desired image motion estimations, we perform numerical experiments on synthetic and real image sequences. The comparison of our results with other well-known methods demonstrates the ability of the optical control formulation to determine image motion from video and image sequences, and indicates improved performance.

References

  1. Alvarez, L., Esclarìn, J., Lefebure, M., and Sànchez, J. (1999). A PDE model for computing the optical flow. In Proceedings of CEDYA XVI, pages 1349-1356.
  2. Barron, J. L., Fleet, D. J., and Beauchemin, S. S. (1994). Performance of optical flow techniques. Int. J. of Computer Vision, 12(1):43-77.
  3. Borzi, A., Ito, K., and Kunisch, K. (2002). Optimal control formulation for determining optical flow. SIAM J. Sci. Comput., 24(3):818-847.
  4. Burgers, J. M. (1948). A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech., 1:171- 199.
  5. Colella, P. and Puckett, E. G. (1998). Modern Numerical Methods for Fluid Flow. Lecture Notes, Dep. of Mech. Eng., Uni. of California, Berkeley, CA. http://www.rzg.mpg.de/ bds/numerics/cfdlectures.html.
  6. Deriche, R., Kornprobst, P., and Aubert, G. (1995). Opticalflow estimation while preserving its discontinuities: A variational approach. In ACCV, pages 71-80.
  7. Gunzburger, M. (2002). Perspectives in Flow Control and Optimization. Society for Industrial and Applied Mathematics.
  8. Hirsch, C. (2000). Numerical Computation of Internal and External Flows (Vol.I+II). John Wiley & Sons.
  9. Horn, B. and Schunck, B. (1981). Determining optical flow. Artificial Intelligence, 17:185-203.
  10. Jain, R., Kasturi, R., and Schunck, B. G. (1995). Machine Vision. McGraw-Hill, Inc.
  11. Lucas, B. D. and Kanade, T. (1981). An iterative image registration technique with an application to stereo vision (darpa). In Proc. of the 1981 DARPA Image Understanding Workshop, pages 121-130.
  12. McCane, B., Novins, K., Crannitch, D., and Galvin, B. (2001). On benchmarking optical flow. Comput. Vis. Image Underst., 84(1):126-143.
  13. Nagel, H. H. (1990). Extending the 'oriented smoothness constraint' into the temporal domain and the estimation of derivatives of optical flow. In Proc. of the first european conf. on computer vision, pages 139-148. Springer.
  14. Ruhnau, P. and Schnörr, C. (2007). Optical Stokes flow: An imaging-based control approach. Experiments in Fluids, 42:61-78.
  15. Schnörr, C. (1991). Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class. Int. J. of Computer Vision, 6(1):25-38.
  16. Stahl, A., Ruhnau, P., and Schnörr, C. (2006). A Distributed Parameter Approach to Dynamic Image Motion. Int. Workshop on The Representation and Use of Prior Knowledge in Vision. ECCV Workshop.
  17. Wedel, A., Pock, T., Zach, C., Bischof, H., and Cremers, D. (2009). An improved algorithm for tv-l1 optical flow. In Statistical and Geometrical Approaches to Visual Motion Analysis: International Dagstuhl Seminar, Dagstuhl Castle, Germany, July 13-18, 2008. Revised Papers, pages 23-45. Springer-Verlag.
  18. Weickert, J. and Schnörr, C. (2001a). A theoretical framework for convex regularizers in PDE-based computation of image motion. Int. J. of Computer Vision, 45(3):245-264.
  19. Weickert, J. and Schnörr, C. (2001b). Variational optic flow computation with a spatio-temporal smoothness constraint. J. Math. Imaging and Vision, 14(3):245-255.
Download


Paper Citation


in Harvard Style

Stahl A. and Morten Aamo O. (2010). IMAGE MOTION ESTIMATION USING OPTIMAL FLOW CONTROL . In Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 978-989-8425-02-7, pages 14-21. DOI: 10.5220/0002937700140021


in Bibtex Style

@conference{icinco10,
author={Annette Stahl and Ole Morten Aamo},
title={IMAGE MOTION ESTIMATION USING OPTIMAL FLOW CONTROL},
booktitle={Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2010},
pages={14-21},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002937700140021},
isbn={978-989-8425-02-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - IMAGE MOTION ESTIMATION USING OPTIMAL FLOW CONTROL
SN - 978-989-8425-02-7
AU - Stahl A.
AU - Morten Aamo O.
PY - 2010
SP - 14
EP - 21
DO - 10.5220/0002937700140021