A ROBUST LIMITED-INFORMATION FEEDBACK FOR A CLASS OF UNCERTAIN NONLINEAR SYSTEMS

Alessio Franci, Antoine Chaillet

Abstract

We propose a variant of the recently introduced strategy for stabilization with limited information recently introduced in (Liberzon and Hespanha, 2005) and analyze its robustness properties. We show that, if the nominal plant can be made Input-to-State Stable (ISS) with respect to measurement errors, parameter uncertainty and exogenous disturbances, then this robustness is preserved with this quantized feedback. More precisely, if a sufficient bandwidth is available on the communication network, then the resulting closed-loop is shown to be semiglobally Input-to-State practically Stable (ISpS).

References

  1. A.Isidori (1999). Nonlinear control system II. Springer Verlag.
  2. Freeman, R. A. and Kokotovich, P. V. (1993). Global robustness of nonlinear systems to state measurment disturbances. IEEE 32nd Conference on Decision and Control, pages 1507-1512.
  3. Hespanha, J. P., Naghshtabrizi, P., and Xu, Y. (2007). A survey of recent results in networked control systems. Proceedings of the IEEE, 95:138-162.
  4. Jaglin, J., de Wit, C. C., and Siclet, C. (2008). Delta modulation for multivariable centralized linear networked controlled systems.
  5. Jaglin, J., de Wit, C. C., and Siclet, C. (2009). Adaptive quantization for linear systems. Submitted to IEEE Conf. on Decision and Control 2009.
  6. Jiang, Z. P., Teel, A., and Praly, L. (1994). Small gain theorems for ISS systems and applications. Math. of Cont. Sign. and Syst., 7:95-120.
  7. Kameneva, T. and Nes?ic , D. (2008). Input-to-state stabilization of nonlinear systems with quantized feedback. In Proc. 17th. IFAC World Congress, pages 12480- 12485.
  8. Liberzon, D. (2003). On stabilization of linear systems with limited information. IEEE Trans. on Automat. Contr., 48(2):304-307.
  9. Liberzon, D. (2009). Nonlinear control with limited information. Roger Brockett legacy special issue. Communications in Information Systems, 9:44- 58. Available at: http://decision.csl.uiuc.edu/ liberzon/research/legacy.pdf.
  10. Liberzon, D. and Hespanha, J. P. (2005). Stabilization of nonlinear systems with limited information feedback. IEEE Trans. on Automat. Contr., 50:910-915.
  11. Liberzon, D. and Nes?ic , D. (2007). Input-to-state stabilization of linear systems with quantized state measurements. IEEE Trans. on Automatic Control, 52:767- 781.
  12. Montestruque, L. A. and Antsaklis, P. (2004). Stability of model-based networked control systems with timevarying transmission times. IEEE Trans. on Automat. Contr., 49(9):1562-1572.
  13. Nair, G. N. and Evans, R. J. (2004). Stabilizability of stochastic linear systems with finite feedback data rates. SIAM J. Control Optim., 43(2):413-436.
  14. Nair, G. N., Fagnani, F., Zampieri, S., and Evans, R. J. (2007). Feedback control under data rate constraints: An overview. Proc. of the IEEE, 95(8):108-137.
  15. Persis, C. D. and Isidori, A. (2004). Stabilizability by state feedback implies stabilizability by encoded state feedback. System & Control Letters, 53:249-258.
  16. Petersen, I. R. and Savkin, A. V. (2001). Multi-rate stabilization of multivariable discrete-time linear systems via a limited capacity communication channel. Proc. 40th IEEE Conf. on Decision and Control.
  17. Praly, L. and Wang, Y. (1996). Stabilization in spite of matched unmodelled dynamics and an equivalent definition of input-to-state stability. Math. of Cont. Sign. and Syst., 9:1-33.
  18. Sharon, Y. and Liberzon, D. (2007). Input-to-State Stabilization with minimum number of quantization regions. pages 20-25.
  19. Sharon, Y. and Liberzon, D. (2008). Input-to-State Stabilization with quantized output feedback. pages 500- 513.
  20. Sontag, E. and Wang, Y. (1995). On characterizations of the Input-to-State Stability property. Syst. & Contr. Letters, 24:351-359.
  21. Teel, A. and Praly, L. (1998). On assigning the derivative of a disturbance attenuation clf. Proc. 37th. IEEE Conf. Decision Contr., 3:2497-2502.
Download


Paper Citation


in Harvard Style

Franci A. and Chaillet A. (2010). A ROBUST LIMITED-INFORMATION FEEDBACK FOR A CLASS OF UNCERTAIN NONLINEAR SYSTEMS . In Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 978-989-8425-02-7, pages 45-53. DOI: 10.5220/0002950000450053


in Bibtex Style

@conference{icinco10,
author={Alessio Franci and Antoine Chaillet},
title={A ROBUST LIMITED-INFORMATION FEEDBACK FOR A CLASS OF UNCERTAIN NONLINEAR SYSTEMS},
booktitle={Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2010},
pages={45-53},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002950000450053},
isbn={978-989-8425-02-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - A ROBUST LIMITED-INFORMATION FEEDBACK FOR A CLASS OF UNCERTAIN NONLINEAR SYSTEMS
SN - 978-989-8425-02-7
AU - Franci A.
AU - Chaillet A.
PY - 2010
SP - 45
EP - 53
DO - 10.5220/0002950000450053