ROBUST 6D POSE DETERMINATION IN COMPLEX ENVIRONMENTS FOR ONE HUNDRED CLASSES

Thilo Grundmann, Robert Eidenberger, Martin Schneider, Michael Fiegert

Abstract

For many robotic applications including service robotics robust object classification and 6d object pose determination are of substantial importance. This paper presents an object recognition methodology which is capable of complex multi-object scenes. It handles partial occlusions and deals with large sets of different and alike objects. The object recognition process uses local interest points from the SIFT algorithm as features for object classification. From stereo images spatial information is gained and 6d poses are calculated. All reference data is extracted in an off-line model generation process from large training data sets of a total of 100 different household items. In the recognition phase these objects are robustly identified in sensor measurements. The proposed work is integrated into an autonomous service robot. In various experiments the recognition quality is evaluated and the position accuracy is determined by comparison to ground truth data.

References

  1. Azad, P., Asfour, T., and Dillmann, R. (2007). Stereobased 6d object localization for grasping with humanoid robot systems. In IEEE IROS 2007.
  2. Azad, P., Asfour, T., and Dillmann, R. (2009). Stereo-based vs. monocular 6-dof pose estimation using point features: A quantitative comparison. In Autonome Mobile Systeme 2009, Informatik aktuell. Springer.
  3. Collet, A., Berenson, D., Srinivasa, S., and Ferguson, D. (2009). Object recognition and full pose registration from a single image for robotic manipulation. In IEEE ICRA 09.
  4. Dementhon, D. F. and Davis, L. S. (1995). Model-based object pose in 25 lines of code. International Journal of Computer Vision, Springer Netherlands, Volume 15.
  5. Eidenberger, R., Grundmann, T., and Zoellner, R. (2009). Probabilistic action planning for active scene modeling in continuous high-dimensional domains. IEEE ICRA 2009.
  6. Grundmann, T., Eidenberger, R., and Zoellner, R. (2008). Local dependency analysis in probabilistic scene estimation. In ISMA 2008. 5th International Symposium on Mechatronics and Its Applications.
  7. Hartley, R. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Cambridge University Press.
  8. Heyer, L. J., Kruglyak, S., and Yooseph, S. (1999). Exploring expression data: Identification and analysis of coexpressed genes. Genome Res., 9.
  9. Kragic, D., Miller, A. T., and Allen, P. K. (2001). Real-time tracking meets online grasp planning. In IEEE ICRA 2001, Seoul, Republic of Korea.
  10. Lowe, D. G. (1999). Object recognition from local scaleinvariant features. In International Conference on Computer Vision, pages 1150-1157, Corfu, Greece.
  11. Nayar, S., Nene, S., and Murase, H. (1996). Real-time 100 object recognition system. In IEEE ICRA 1996.
  12. Pan, Q., Reitmayr, G., and Drummond, T. (2009). ProFORMA: Probabilistic Feature-based On-line Rapid Model Acquisition. In Proc. 20th British Machine Vision Conference (BMVC), London.
  13. Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. In IEEE CVPR 2006.
  14. Walter, J. A. and Arnrich, B. (2000). Gabor filters for object localization and robot grasping. In ICPR 2000.
  15. Xue, Z., Kasper, A., Zoellner, J., and Dillmann, R. (2009). An automatic grasp planning system for service robots. In 14th International Conference on Advanced Robotics (ICAR).
  16. Xue, Z., Marius Zoellner, J., and Dillmann, R. (2007). Grasp planning: Find the contact points. In IEEE Robio 2007.
  17. Zhang, J., Schmidt, R., and Knoll, A. (1999). Appearancebased visual learning in a neuro-fuzzy model for finepositioning of manipulators. In IEEE ICRA 1999.
Download


Paper Citation


in Harvard Style

Grundmann T., Eidenberger R., Schneider M. and Fiegert M. (2010). ROBUST 6D POSE DETERMINATION IN COMPLEX ENVIRONMENTS FOR ONE HUNDRED CLASSES . In Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8425-01-0, pages 301-308. DOI: 10.5220/0002951403010308


in Bibtex Style

@conference{icinco10,
author={Thilo Grundmann and Robert Eidenberger and Martin Schneider and Michael Fiegert},
title={ROBUST 6D POSE DETERMINATION IN COMPLEX ENVIRONMENTS FOR ONE HUNDRED CLASSES},
booktitle={Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2010},
pages={301-308},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002951403010308},
isbn={978-989-8425-01-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - ROBUST 6D POSE DETERMINATION IN COMPLEX ENVIRONMENTS FOR ONE HUNDRED CLASSES
SN - 978-989-8425-01-0
AU - Grundmann T.
AU - Eidenberger R.
AU - Schneider M.
AU - Fiegert M.
PY - 2010
SP - 301
EP - 308
DO - 10.5220/0002951403010308