A PASSIVITY-BASED APPROACH TO DEPLOYMENT IN MULTI-AGENT NETWORKS

Heath LeBlanc, Emeka Eyisi, Nicholas Kottenstette, Xenofon Koutsoukos, Janos Sztipanovits

Abstract

Surveillance and convoy tracking applications often require groups of networked agents for redundancy and better coverage. An important goal upon deployment is to establish a formation around a target. Although there exist distributed algorithms using only local communication that achieve this goal, they typically ignore destabilizing effects resulting from implementation uncertainties, such as network delays and data loss. This paper resolves these issues by introducing a discrete-time distributed design framework that uses a compositional, passivity-based approach to ensure lm_2 - stability regardless of overlay network topology, in the presence of network delays and data loss. For the restricted case of a uniform node degree in the overlay network topology, the paper shows that asymptotic formation establishment is achieved. Finally, simulations of velocity-limited unmanned air vehicles (UAVs) are presented that demonstrate the robustness of the network architecture to network delays and data loss.

References

  1. Arcak, M. (2007). Passivity as a design tool for group coordination. IEEE Transactions on Automatic Control, 52(8):1380-1390.
  2. Bai, H., Arcak, M., and Wen, J. T. (2008). Rigid body attitude coordination without inertial frame information. Automatica, 44(12):3170 - 3175.
  3. Chopra, N., Berestesky, P., and Spong, M. (2008). Bilateral teleoperation over unreliable communication networks. IEEE Transactions on Control Systems Technology, 16(2):304-313.
  4. Fax, J. A. and Murray, R. M. (2004). Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 49(9):1465 - 1476.
  5. Godsil, C. and Royle, G. (2001). Algebraic Graph Theory. Springer-Verlag New York, Inc.
  6. Igarashi, Y., Hatanaka, T., Fujita, M., and Spong, M. (2008). Passivity-based output synchronization in se(3). In American Control Conference, pages 723-728.
  7. Ihle, I.-A. F., Arcak, M., and Fossen, T. I. (2007). Passivitybased designs for synchronized path-following. Automatica, 43(9):1508 - 1518.
  8. Kottenstette, N. and Antsaklis, P. (2007). Stable digital control networks for continuous passive plants subject to delays and data dropouts. 46th IEEE Conference on Decision and Control, pages 4433-4440.
  9. Kottenstette, N., Hall, J., Koutsoukos, X., Antsaklis, P., and Sztipanovits, J. (2009). Digital control of multiple discrete passive plants over networks. International Journal of Systems, Control and Communications (IJSCC): Special Issue on Progress in Networked Control Systems. To Appear.
  10. Kottenstette, N. and Porter, J. (2009). Digital Passive Attitude and Altitude Control Schemes for Quadrotor Aircraft. 7th International Conference on Control and Automation.
  11. Lawrence, D. A., Frew, E. W., and Pisano, W. J. (2008). Lyapunov vector fields for autonomous uav flight control. AIAA Journal of Guidance, Control, and Dynamics, 31(5):1220-1229.
  12. MathWorks, I. T. (2008). Simulink. Dynamic System Simulation for MATLAB, Version 7.1.
  13. Niemeyer, G. and Slotine, J.-J. E. (2004). Telemanipulation with time delays. International Journal of Robotics Research, 23(9):873 - 890.
  14. Ohlin, M., Henriksson, D., and Cervin, A. (2007). TrueTime 1.5 Reference Manual. Dept. of Automatic Control, Lund University, Sweden. http://www.control.lth.se/truetime/.
  15. Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control, 51(3):401-420.
  16. Olfati-Saber, R., Fax, J. A., and Murray, R. M. (2007). Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95(1):215-233.
  17. Ren, W., Beard, R., and Atkins, E. (2005). A survey of consensus problems in multi-agent coordination. In Proceedings of the American Control Conference, pages 1859-1864 vol. 3.
  18. Stramigioli, S., Secchi, C., van der Schaft, A. J., and Fantuzzi, C. (2005). Sampled data systems passivity and discrete port-hamiltonian systems. IEEE Transactions on Robotics, 21(4):574 - 587.
  19. van der Schaft, A. (1999). L2-Gain and Passivity in Nonlinear Control. Springer-Verlag New York, Inc., Secaucus, NJ, USA.
  20. Wang, W. and Slotine, J.-J. (2006). Contraction analysis of time-delayed communications and group cooperation. IEEE Transactions on Automatic Control, 51(4):712- 717.
  21. Zames, G. (1966). On the input-output stability of timevarying nonlinear feedback systems part one: Conditions derived using concepts of loop gain, conicity, and positivity. IEEE Transactions on Automatic Control, 11(2):228-238.
Download


Paper Citation


in Harvard Style

LeBlanc H., Eyisi E., Kottenstette N., Koutsoukos X. and Sztipanovits J. (2010). A PASSIVITY-BASED APPROACH TO DEPLOYMENT IN MULTI-AGENT NETWORKS . In Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8425-00-3, pages 53-62. DOI: 10.5220/0002951500530062


in Bibtex Style

@conference{icinco10,
author={Heath LeBlanc and Emeka Eyisi and Nicholas Kottenstette and Xenofon Koutsoukos and Janos Sztipanovits},
title={A PASSIVITY-BASED APPROACH TO DEPLOYMENT IN MULTI-AGENT NETWORKS},
booktitle={Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2010},
pages={53-62},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002951500530062},
isbn={978-989-8425-00-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - A PASSIVITY-BASED APPROACH TO DEPLOYMENT IN MULTI-AGENT NETWORKS
SN - 978-989-8425-00-3
AU - LeBlanc H.
AU - Eyisi E.
AU - Kottenstette N.
AU - Koutsoukos X.
AU - Sztipanovits J.
PY - 2010
SP - 53
EP - 62
DO - 10.5220/0002951500530062