A COMPARATIVE ANALYSIS OF TIME-FREQUENCY DECOMPOSITIONS IN POLYPHONIC PITCH ESTIMATION

F. J. Cañadas-Quesada, P. Vera-Candeas, N. Ruiz-Reyes, J. Carabias, P. Cabañas, F. Rodriguez

Abstract

In a monaural polyphonic music context, time-frequency information used by most of the multiple fundamental frequency estimation systems, extracted from temporal-domain of the polyphonic signal, is mainly computed using fixed-resolution or variable resolution time-frequency decompositions. This time-frequency information is crucial in the polyphonic estimation process because it must clearly represent all useful information in order to find the set of active pitches. In this paper, we present a preliminary study analyzing two different decompositions, Constant Q Transform and Short Time Fourier Transform, which are integrated in the same multiple fundamental frequency estimation system, with the aim of determining what decomposition is more suitable for polyphonic musical signal analysis and how each of them influences in the accuracy results of the polyphonic estimation considering low-middle-high frequency evaluation.

References

  1. Bello, J., Daudet, L., and Sandler, M. (2006). Automatic piano transcription using frequency and time-domain information. IEEE Transactions on Speech and Audio Processing, 14(6):2242-2251.
  2. Brown, J. (1991). Calculation of a constant q spectral transform. Journal of the Acoustical Society of America, 89(1):425-434.
  3. Burred, J. and Sikora, T. (2007). Monaural source separation from musical mixtures based on time-frequency timbre models. Proc. International Conference on Music Information Retrieval (ISMIR). Vienna, Austria.
  4. Quesada, F., Vera-Candeas, P., Ruiz-Reyes, N., Mata-Campos, R., and Carabias-Orti, J. (2008). Noteevent detection in polyphonic musical signals based on harmonic matching pursuits and spectral smoothness. Journal of New Music Research, 89(8):1653- 1660.
  5. Carabias, J., Vera, P., Ruiz, N., Mata, R., and Canadas, F. (2008). Polyphonic piano transcription based on spectral separation. 124thAudio Engineering Society (AES). Amsterdam, The Netherlands, 2008.
  6. Emiya, V., Badeau, R., and David, B. (2008). Automatic transcription of piano music based on hmm tracking of jointly-estimated pitches. Proc. European Conference on Signal Processing (EUSIPCO).
  7. Every, M. and Szymanski, J. (2006). Separation of synchronous pitched notes by spectral filtering of harmonics. IEEE Transactions on Audio, Speech, and Language Processing, 14(5):1845-1856.
  8. Goto, M. (2004). A real-time music-scene-description system: Predominant-f0 estimation for detecting melody and bass lines in real-word audio signals. Speech Communications, 43(4):311-329.
  9. IDMT, F. (2009). Musicline. http://www.musicline.de/de/ melodiesuche/input.
  10. Kameoka, H., Nishimoto, T., and Sagayama, S. (2007). A multipitch analyzer based on harmonic temporal structured clustering. IEEE Trans. on Audio, Speech and Language Processing, 15(3):982-994.
  11. Klapuri, A. (2003). Multiple fundamental frequency estimation by harmonicity and spectral smoothness. IEEE Trans. Speech and Audio Processing, 11(6):804-816.
  12. Li, Y., Woodruff, J., and Wang, D. (2009). Monaural musical sound separation based on pitch and common amplitude modulation. IEEE Trans. on Audio, Speech and Language Processing, 17(-):1361-1371.
  13. Marolt, M. (2004). A connectionist approach to automatic transcription of polyphonic piano music. IEEE Transactions on Multimedia, 6(3):439-449.
  14. Neubacker, P. (2009). Celemony. http://www.celemony. com.
  15. Poliner, G. and Ellis, D. (2007). A discriminative model for polyphonic piano transcription. EURASIP Journal on Advances in Signal Processing, 2007(1):154-162.
  16. Saito, S., Kameoka, H., Takahashi, K., Nishimoto, T., and Sagayama, S. (2008). Specmurt analysis of polyphonic music signals. IEEE Trans. on Audio, Speech and Language Processing, 16(3):639-650.
  17. Smaragdis, P. (2009). Relative pitch tracking of multiple arbitrary sounds. Journal of the Acoustical Society of America, 125(5):3406-3413.
  18. Yeh, C., Roebel, A., and Rodet, X. (2005). Multiple fundamental frequency estimation of polyphonic music signals. in Proc. International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Philadelphia, USA.
Download


Paper Citation


in Harvard Style

J. Cañadas-Quesada F., Vera-Candeas P., Ruiz-Reyes N., Carabias J., Cabañas P. and Rodriguez F. (2010). A COMPARATIVE ANALYSIS OF TIME-FREQUENCY DECOMPOSITIONS IN POLYPHONIC PITCH ESTIMATION . In Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2010) ISBN 978-989-8425-19-5, pages 145-150. DOI: 10.5220/0002955601450150


in Bibtex Style

@conference{sigmap10,
author={F. J. Cañadas-Quesada and P. Vera-Candeas and N. Ruiz-Reyes and J. Carabias and P. Cabañas and F. Rodriguez},
title={A COMPARATIVE ANALYSIS OF TIME-FREQUENCY DECOMPOSITIONS IN POLYPHONIC PITCH ESTIMATION},
booktitle={Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2010)},
year={2010},
pages={145-150},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002955601450150},
isbn={978-989-8425-19-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2010)
TI - A COMPARATIVE ANALYSIS OF TIME-FREQUENCY DECOMPOSITIONS IN POLYPHONIC PITCH ESTIMATION
SN - 978-989-8425-19-5
AU - J. Cañadas-Quesada F.
AU - Vera-Candeas P.
AU - Ruiz-Reyes N.
AU - Carabias J.
AU - Cabañas P.
AU - Rodriguez F.
PY - 2010
SP - 145
EP - 150
DO - 10.5220/0002955601450150