Detection of Iris in Image by Brightness Gradient Projections

Ivan A. Matveev

Abstract

A method is proposed to detect a human iris location and size in digital image given some point lying inside the pupil. Method is based on construction of histogram projections of local brightness gradients and interrelating local maxima of these histograms as probable positions of pupil and iris borders. Method has low calculation cost.

References

  1. Maenpaa T. An Iterative Algorithm for Fast Iris Detection IWBRS 2005. Beijing, China: Beijing Press, P. 127-134.
  2. Lipinski B. Iris Recognition: Detecting the pupil. http://cnx.org/content/m12487/latest/
  3. Daugman J. High confidence personal identification by rapid video analysis of iris texture Proc. IEEE Internat. Carnahan conf. on security technology, 1992. P. 50-60.
  4. Wildes R.P., Asmuth J.C., Green G.L. et al. A system for automated iris recognition Proc. of the 2nd IEEE Workshop on Applications of Computer Vision. 1994. P. 121-128.
  5. Duda R.O., Hart P.E. Use of the Hough transformation to detect lines and curves in pictures Comm ACM. 1972. V. 15. P. 11-15.
  6. Benn D.E., Nixon M.S., Carter J.N. Robust eye centre extraction using the Hough Transform Proc. 1st Int. Conf. on Audio- and Video-Based Biometric Person Authentication, 1997
  7. Kimme C., Ballard D., Sklansky J. Finding circles by an array of accumulators Comm. ACM. 1975. V. 18. P. 120-122.
  8. Davies E.R. A high speed algorithm for circular object location Pattern Recognition Letters. 1987. V. 6. P. 323-333.
  9. Matveev I.A. Method of detection of circle with known internal point Transactions of Institute of System Analysis of RAS on Dynamics of Heterogeneous Systems, 2007. V. 31(1) P. 288-293 (in Russian).
  10. A.A. Rad, K. Faez, Qaragozlou N. Fast Circle Detection Using Gradient Pair Vectors Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney.
  11. C. Sun, Pallottino S. Circular Shortest Path in Images Pattern Recognition, Vol. 36, No.3, pp.709-719, March 2003.
  12. T.-C.Chen, K.-L.Chung An Efficient Randomized Algorithm for Detecting Circles Computer Vision and Image Understanding 83, 172-191 (2001).
  13. G.P.Potebnya, G.S.Lisovenko, V.V.Krivenko Clinical and experimental iridology Kiev, Naukova dumka, 1995 (in Russian)
  14. L.Masek, P.Kovesi MATLAB Source Code for a Biometric Identification System Based on Iris Patterns. The School of Computer Science and Software Engineering, The University of Western Australia. 2003.
Download


Paper Citation


in Harvard Style

A. Matveev I. (2010). Detection of Iris in Image by Brightness Gradient Projections . In Proceedings of the Third International Workshop on Image Mining Theory and Applications - Volume 1: IMTA, (VISIGRAPP 2010) ISBN 978-989-674-030-6, pages 45-50. DOI: 10.5220/0002962100450050


in Bibtex Style

@conference{imta10,
author={Ivan A. Matveev},
title={Detection of Iris in Image by Brightness Gradient Projections},
booktitle={Proceedings of the Third International Workshop on Image Mining Theory and Applications - Volume 1: IMTA, (VISIGRAPP 2010)},
year={2010},
pages={45-50},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002962100450050},
isbn={978-989-674-030-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Workshop on Image Mining Theory and Applications - Volume 1: IMTA, (VISIGRAPP 2010)
TI - Detection of Iris in Image by Brightness Gradient Projections
SN - 978-989-674-030-6
AU - A. Matveev I.
PY - 2010
SP - 45
EP - 50
DO - 10.5220/0002962100450050