HYBRID APPROACH FOR INCOHERENCE DETECTION BASED ON NEURO-FUZZY SYSTEMS AND EXPERT KNOWLEDGE

Susana Martin-Toral, Gregorio I. Sainz-Palmero, Yannis Dimitriadis

Abstract

The way in which document collections are generated, modified or updated generates problems and mistakes in the information coherency, leading to legal, economic and social problems. To tackle this situation, this paper proposes the development of an intelligent virtual domain expert, based on summarization, matching and neuro-fuzzy systems, able to detect incoherences about concepts, values, or references, in technical documentation. In this scope, an incoherence is seen as the lack of consistency between related documents. Each document is summarized in the form of 4-tuples terms, describing relevant ideas or concepts that must be free of incoherences. These representations are then matched using several well-known algorithms. The final decision about the real existence of an incoherence, and its relevancy, is obtained by training a neuro-fuzzy system with expert knowledge, based on the previous knowledge of the activity area and domain experts. The final system offers a semi-automatic solution for incoherence detection and decision support.

References

  1. Afantenos, S. D., Karkaletsis, V., and Stamatopoulos, P. (2005). Summarization from medical documents: a survey. Artificial Intelligence in Medicine, 33(2):157- 177.
  2. Arango, F. (2003). Gestion de inconsistencias en la evolucion e interoperacion de los esquemas conceptuales OO, en el marco formal de OASIS. PhD thesis, Univ. Politecnica de Valencia, Valencia, Spain.
  3. Berry, M. W. (2004). Survey of Text Mining : Clustering, Classification, and Retrieval. Springer.
  4. Cano Izquierdo, J. M., Dimitriadis, Y. A., Gómez Sánchez, E., and Coronado L ópez, J. (2001). Learnning from noisy information in FasArt and fasback neuro-fuzzy systems. Neural Networks, 14(4-5):407-425.
  5. Chapman, S. (2006). Sam's String Metrics page. Available at http://www.dcs.shef.ac.uk/ sam/stringmetrics.html (Accessed Dec.09).
  6. Cohen, W. W., Ravikumar, P., and Fienberg, S. E. (2003). A comparison of string metrics for matching names and records. In Proceedings of the KDD-2003 Workshop on Data Cleaning, Record Linkage, and Object Consolidation, pages 13-18, Washington DC, USA.
  7. Garcia, E. Cosine Similarity and Term Weight Tutorial. Mi Islita, Oct 2006. Available at http://www.miislita.com/information-retrievaltutorial/cosine-similarity-tutorial.html (Accessed Dec.09).
  8. Koudas, N., Marathe, A., and Srivastava, D. (2005). SPIDER: flexible matching in databases. In SIGMOD 7805: Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pages 876- 878, New York, NY, USA. ACM.
  9. Krulwich, B. and Burkey, C. (1997). The infofinder agent: Learning user interests through heuristic phrase extraction. IEEE Expert: Intelligent Systems and Their Applications, 12(5):22-27.
  10. Mannila, H., Toivonen, H., and Verkamo, A. I. (1997). Discovery of frequent episodes in event sequences. Data Min. Knowl. Discov., 1(3):259-289.
  11. Martin, S., Arribas, V., and Sainz, G. (2009). Detection of incoherences in a document corpus based on the application of a neuro-fuzzy system. In Tenth Int. Conf. on Document Analysis and Recognition.
  12. Martín, S., Sainz, G., and Dimitriadis, Y. (2008). Detection of incoherences in a technical and normative document corpus. In Tenth ICEIS'08, volume Artficial Intelligence and Decission Support Systems, pages 282- 287, Barcelona, Spain.
  13. Mingshan, L. and Ching-to, A. M. (2002). Consistency in performance evaluation reports and medical records. The Journal of Mental Health Policy and Economics, 5(4):191-192.
  14. Ruiz, M. (2002). Sistemas jurídicos y conflictos normativos. Dykinson, Universidad Carlos III de Madrid, Instituto de Derechos Humanos Bartolomé de las Casas.
  15. Sainz, G. I., Fuente, M. J., and Vega, P. (2004). Recurrent neuro-fuzzy modelling of a wastewater treatment plant. European Journal of Control, 10:83-95.
  16. Sainz Palmero, G., Dimitriadis, Y., Cano Izquierdo, J., Gómez Sánchez, E., and Parrado Hernández, E. (2000). ART based model set for pattern recognition: FasArt family. In Bunke, H. and Kandel, A., editors, Neuro-fuzzy pattern recognition, pages 147- 177. World Scientific Pub. Co.
  17. Sainz Palmero, G. I. and Dimitriadis, Y. A. (1999). Structured document labeling and rule extraction using a new recurrent fuzzy-neural system. In Fifth Int. Conf. on Document Analysis and Recognition, ICDAR' 99, page 3181.
Download


Paper Citation


in Harvard Style

Martin-Toral S., I. Sainz-Palmero G. and Dimitriadis Y. (2010). HYBRID APPROACH FOR INCOHERENCE DETECTION BASED ON NEURO-FUZZY SYSTEMS AND EXPERT KNOWLEDGE . In Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-8425-05-8, pages 408-413. DOI: 10.5220/0002966804080413


in Bibtex Style

@conference{iceis10,
author={Susana Martin-Toral and Gregorio I. Sainz-Palmero and Yannis Dimitriadis},
title={HYBRID APPROACH FOR INCOHERENCE DETECTION BASED ON NEURO-FUZZY SYSTEMS AND EXPERT KNOWLEDGE},
booktitle={Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2010},
pages={408-413},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002966804080413},
isbn={978-989-8425-05-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - HYBRID APPROACH FOR INCOHERENCE DETECTION BASED ON NEURO-FUZZY SYSTEMS AND EXPERT KNOWLEDGE
SN - 978-989-8425-05-8
AU - Martin-Toral S.
AU - I. Sainz-Palmero G.
AU - Dimitriadis Y.
PY - 2010
SP - 408
EP - 413
DO - 10.5220/0002966804080413