FINDING AND CLASSIFYING PRODUCT RELATIONSHIPS USING INFORMATION FROM THE PUBLIC WEB

Daniel Schuster, Till M. Juchheim, Alexander Schill

Abstract

Relationships between products such as accessory or successor products are hard to find on the Web or have to be inserted manually in product information systems. Finding and classifying such relations automatically using information from the publicWeb only offers great value for customers and vendors as it helps to improve the buying process at low cost. We present and evaluate algorithms and methods for product relationship extraction on the Web requiring only a set of clustered product names as input. The solution can be easily implemented in different product information systems most useful in but not necessarily restricted to the application domain of online shopping.

References

  1. Adomavicius, G. and A., T. (2005). Toward the next generation of recommender systems: A survey of the state of the art and possible extensions. IEEE Transaction on Knowledge and Data Engineering, 17(6):734-749.
  2. Alias-I (2009). Lingpipe. http://alias-i.com/lingpipe/.
  3. Apache Foundation (2009). http://lucene.apache.org/java/docs/.
  4. Bach, N. and Badaskar, S. (2007). A survey on relation extraction. Technical report, Language Technologies Institute, Carnegie Mellon University.
  5. Banko, M. and Etzioni, O. (2008). The tradeoffs between open and traditional relation extraction. In Proceedings of ACL-08: HLT, pages 28-36, Columbus, Ohio. Association for Computational Linguistics.
  6. Etzioni, O., Banko, M., Soderland, S., and Weld, D. S. (2008). Open information extraction from the web. Commun. ACM, 51(12):68-74.
  7. Fry, B. and Casey, R. (2010). http://processing.org/.
  8. Processing 1.0.
  9. Han, E.-H. S. and Karypis, G. (2005). Feature-based recommendation system. In CIKM 7805: Proceedings of the 14th ACM international conference on Information and knowledge management, pages 446-452, New York, NY, USA. ACM.
  10. Kawamura, T., Nagano, S., and Mizoguchi, Y. (2008). Ontology-based wom extraction service from weblogs. In SAC 7808: Proceedings of the 2008 ACM symposium on Applied computing, pages 2231-2236, New York, NY, USA. ACM.
  11. Linden, G., Smith, B., and York, J. (2003). Amazon.com Recommendations: Item-to-Item Collaborative Filtering. IEEE Internet Computing, 7(1):76-80.
  12. Liu, B., Hu, M., and Cheng, J. (2005). Opinion observer: analyzing and comparing opinions on the web. In WWW 7805: Proceedings of the 14th international conference on World Wide Web, pages 342-351, New York, NY, USA. ACM.
  13. Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press, Cambridge, UK.
  14. Schafer, J. B., Konstan, J., and Riedi, J. (1999). Recommender systems in e-commerce. In EC 7899: Proceedings of the 1st ACM conference on Electronic commerce, pages 158-166, New York, NY, USA. ACM.
  15. Schuster, D. and Schill, A. (2007). NL sampler: Random sampling of web documents based on natural language with query hit estimation. In SAC 7807: Proceedings of the 2007 ACM symposium on Applied computing, pages 812-818, New York, NY, USA. ACM.
  16. Schutz, E. and Buitelaar, P. (2005). Relext: A tool for relation extraction from text in ontology extension. In Proceedings of the 4th International Semantic Web Conference (ISWC).
  17. Shen, E., Lieberman, H., and Lam, F. (2007). What am i gonna wear?: scenario-oriented recommendation. In IUI 7807: Proceedings of the 12th international conference on Intelligent user interfaces, pages 365-368, New York, NY, USA. ACM.
  18. Singhal, A., Buckley, C., and Mitra, M. (1996). Pivoted document length normalization. In SIGIR 7896: Proceedings of the 19th annual international ACM SIGIR conference on Research and development in information retrieval, pages 21-29, New York, NY, USA. ACM.
  19. van Meteren, R. and van Someren M. (2000). Using content-based filtering for recommendation. In MLnet / ECML2000 Workshop, Barcelona, Spain.
  20. Wan, Y., Menon, S., and Ramaprasad, A. (2007). A classification of product comparison agents. Commun. ACM, 50(8):65-71.
  21. Yahoo! Inc. (2010). Yahoo! search boss. http://developer.yahoo.com/search/boss/.
Download


Paper Citation


in Harvard Style

Schuster D., M. Juchheim T. and Schill A. (2010). FINDING AND CLASSIFYING PRODUCT RELATIONSHIPS USING INFORMATION FROM THE PUBLIC WEB . In Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-8425-04-1, pages 300-309. DOI: 10.5220/0002973603000309


in Bibtex Style

@conference{iceis10,
author={Daniel Schuster and Till M. Juchheim and Alexander Schill},
title={FINDING AND CLASSIFYING PRODUCT RELATIONSHIPS USING INFORMATION FROM THE PUBLIC WEB},
booktitle={Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2010},
pages={300-309},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002973603000309},
isbn={978-989-8425-04-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - FINDING AND CLASSIFYING PRODUCT RELATIONSHIPS USING INFORMATION FROM THE PUBLIC WEB
SN - 978-989-8425-04-1
AU - Schuster D.
AU - M. Juchheim T.
AU - Schill A.
PY - 2010
SP - 300
EP - 309
DO - 10.5220/0002973603000309