A MODEL FOR REPRESENTING VAGUE LINGUISTIC TERMS AND FUZZY RULES FOR CLASSIFICATION IN ONTOLOGIES

Cristiane A. Yaguinuma, Vinícius R. T. Ferraz, Marilde T. P. Santos, Heloisa A. Camargo, Tatiane M. Nogueira

Abstract

Ontologies have been successfully employed in applications that require semantic information processing. However, traditional ontologies are not able to express fuzzy or vague information, which often occurs in human vocabulary as well as in several application domains. In order to deal with such restriction, concepts of fuzzy set theory should be incorporated into ontologies so that it is possible to represent and reason over fuzzy or vague knowledge. In this context, this paper proposes a model for representing fuzzy ontologies covering fuzzy properties and fuzzy rules, and we also implement fuzzy reasoning methods such as classical and general fuzzy reasoning, aiming to support classification of new instances based on fuzzy rules.

References

  1. Bezdeck, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell, MA, USA.
  2. Bobillo, F. and Straccia, U. (2008). fuzzydl: An expressive fuzzy description logic reasoner. In FUZZ-IEEE, pages 923-930.
  3. Calegari, S. and Ciucci, D. (2007). Fuzzy ontology, fuzzy description logics and fuzzy-owl. In International Workshop on Fuzzy Logic and Applications, pages 118-126.
  4. Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., and Wilkinson, K. (2004). Jena: implementing the semantic web recommendations. In WWW, pages 74-83.
  5. Cordón, O., Jesus, M. J. D., and Herrera, F. (1999). A proposal on reasoning methods in fuzzy rule-based classification systems. International Journal of Approximate Reasoning, 20(1):21 - 45.
  6. Damásio, C. V., Pan, J. Z., Stoilos, G., and Straccia, U. (2008). Representing uncertainty in ruleml. Fundamenta Informaticae, 82(3):265-288.
  7. Gruber, T. R. (2009). Ontology. In Encyclopedia of Database Systems, pages 1963-1965. Springer.
  8. Klir, G. J. and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic - Theory and Applications. Prentice Hall PTR, Upper Saddle River, USA.
  9. Nogueira, T. M., Camargo, H. D. A., and Rezende, S. O. (2009). Management of imprecision and uncertainty in the identification of similar textual documents. Congress of the Tri-national Academy of Sciences, pages 1-10. C3N Annals (in portuguese).
  10. Pan, J. Z., Stamou, G., Stoilos, G., Taylor, S., and Thomas, E. (2008). Scalable querying services over fuzzy ontologies. In WWW, pages 575-584.
  11. Stoilos, G., Simou, N., Stamou, G., and Kollias, S. (2006). Uncertainty and the semantic web. IEEE Intelligent Systems, 21(5):84-87.
  12. Straccia, U. (2006). A fuzzy description logic for the semantic web. In Fuzzy Logic and the Semantic Web, pages 73-90. Elsevier.
  13. Wang, L. and Mendel, J. (1992). Generating fuzzy rules by learning from examples. IEEE Transaction on Fuzzy Systems, Man and Cybernetics, 22:414-427.
  14. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3):338-353.
Download


Paper Citation


in Harvard Style

A. Yaguinuma C., R. T. Ferraz V., T. P. Santos M., A. Camargo H. and M. Nogueira T. (2010). A MODEL FOR REPRESENTING VAGUE LINGUISTIC TERMS AND FUZZY RULES FOR CLASSIFICATION IN ONTOLOGIES . In Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-8425-05-8, pages 438-442. DOI: 10.5220/0002976204380442


in Bibtex Style

@conference{iceis10,
author={Cristiane A. Yaguinuma and Vinícius R. T. Ferraz and Marilde T. P. Santos and Heloisa A. Camargo and Tatiane M. Nogueira},
title={A MODEL FOR REPRESENTING VAGUE LINGUISTIC TERMS AND FUZZY RULES FOR CLASSIFICATION IN ONTOLOGIES},
booktitle={Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2010},
pages={438-442},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002976204380442},
isbn={978-989-8425-05-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - A MODEL FOR REPRESENTING VAGUE LINGUISTIC TERMS AND FUZZY RULES FOR CLASSIFICATION IN ONTOLOGIES
SN - 978-989-8425-05-8
AU - A. Yaguinuma C.
AU - R. T. Ferraz V.
AU - T. P. Santos M.
AU - A. Camargo H.
AU - M. Nogueira T.
PY - 2010
SP - 438
EP - 442
DO - 10.5220/0002976204380442