ANOVA-BASED RF DNA ANALYSIS - Identifying Significant Parameters for Device Classification

Kevin S. Kuciapinski, Michael A. Temple, Randall W. Klein

Abstract

Analysis of variance (ANOVA) is applied to RF DNA fingerprinting techniques to ascertain the most significant signal characteristics that can be used to form robust statistical fingerprint features. The goal is to find features that enable reliable identification of like-model communication devices having different serial numbers. Once achieved, these unique physical layer identities can be used to augment existing bit-level protection mechanisms and overall network security is improved. ANOVA experimentation is generated using a subset of collected signal characteristics (amplitude, phase, frequency, signal-to-noise ratio, etc.) and post-collection processing parameters (bandwidth, fingerprint regions, statistical features, etc.). The ANOVA input is percent correct device classification as obtained from MDA/ML discrimination using three like-model devices from a given manufacturer. Full factorial design experiments and ANOVA are used to determine the significance of individual parameters, and interactions thereof, in achieving higher percentages of correct classification. ANOVA is shown to be well-suited for the task and reveals parametric interactions that are otherwise unobservable using conventional graphical and tabular data representations.

References

  1. Agilent (2004). Agilent E3238 Signal Intercept and Collection Solutions: Family Overview. Publication #5989-1274EN, Agilent Technologies Inc., USA.
  2. Blau, J. (2009). Open-source effort to hack GSM. spectrum.ieee.org/Telecom/Wireless/Open-SourceEffort-to-Hack-GSM.
  3. Kassner, M. (2009). Cracking GSM encryption just got easier. blogs.techrepublic.com.com/wireless.
  4. Klein, R., Temple, M., and Mendenhall, M. (2009a). Application of wavelet-based RF fingerprinting to enhance wireless network security. Jour of Communications and Networks. Vol. 11, No. 6, 544-555, Dec.
  5. Klein, R., Temple, M., Mendenhall, M., and Reising, D., (2009b). Sensitivity analysis of burst detection and RF fingerprinting classification performance. IEEE Int. Conf on Communications (ICC09), Germany, Jun.
  6. Montgomery, D., (2009). Design and Analysis of Experiments, John Wiley & Sons Inc. Hoboken, 7th Edition.
  7. Reising, D., Temple, M., and Mendenhall, M. (2010a). Improved wireless security for GMSK-based devices using RF fingerprinting. Int. J. Electronic Security and Digital Forensics. Vol. 3, No. 1, 41-59, Mar.
  8. Reising, D., Temple, M., and Mendenhall, M. (2010b). Improving intra-cellular security using air monitoring with RF fingerprints. IEEE Wireless Comm and Networking Conf (WCNC10), Australia, Apr.
Download


Paper Citation


in Harvard Style

S. Kuciapinski K., A. Temple M. and W. Klein R. (2010). ANOVA-BASED RF DNA ANALYSIS - Identifying Significant Parameters for Device Classification . In Proceedings of the International Conference on Wireless Information Networks and Systems - Volume 1: WINSYS, (ICETE 2010) ISBN 978-989-8425-24-9, pages 47-52. DOI: 10.5220/0002994100470052


in Bibtex Style

@conference{winsys10,
author={Kevin S. Kuciapinski and Michael A. Temple and Randall W. Klein},
title={ANOVA-BASED RF DNA ANALYSIS - Identifying Significant Parameters for Device Classification},
booktitle={Proceedings of the International Conference on Wireless Information Networks and Systems - Volume 1: WINSYS, (ICETE 2010)},
year={2010},
pages={47-52},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002994100470052},
isbn={978-989-8425-24-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Wireless Information Networks and Systems - Volume 1: WINSYS, (ICETE 2010)
TI - ANOVA-BASED RF DNA ANALYSIS - Identifying Significant Parameters for Device Classification
SN - 978-989-8425-24-9
AU - S. Kuciapinski K.
AU - A. Temple M.
AU - W. Klein R.
PY - 2010
SP - 47
EP - 52
DO - 10.5220/0002994100470052