BREAST MASS DETECTION USING BILATERAL FILTER AND MEAN SHIFT BASED CLUSTERING

Farhang Sahba, Anastasios Venetsanopoulos

Abstract

This paper presents a new method for mass detection and segmentation in mammography images. The extraction of the breast border is the first step. A bilateral filter is then applied to the breast area to smooth the image while preserving the edges. Image pixels are subsequently clustered using an adaptive mean shift scheme that employs intensity information to extract a set of high density points in the feature space. Due to its non-parametric nature, adaptive mean shift algorithm can work effectively with non-convex regions resulting in suitable candidates for a reliable segmentation. The clustering is then followed by further stages involving mode fusion. An artificial neural network is also used to remove the false detected regions and recognize the real masses. The proposed method has been validated on standard database. The results show that this method detects and segments masses in mammography images effectively, making it useful for breast cancer detection systems.

References

  1. Berman, C. G. (2007). Recent advances in breast-specific imaging. Cancer control, 14(4):338-349.
  2. Cheng, H. D., Shi, X. J., Min, R., Hu, L. M., Cai, X. P., and Du, H. N. (2006). Approaches for automated detection and classification of masses in mammograms. Pattern Recognition, 39(4):646-668.
  3. Cleveland, W. and Devlin, S. (1988). weighted regression: An approach to regression analysis by local fitting. Jour. of the American Stat.l Assoc., 83:596-610.
  4. Comaniciu, D. and Meer, P. (2002). Mean-shift: A robust approach toward feature space analysis. IEEE Transaction on Pattern Analysis and Machine Intelligence, 24(5):603-619.
  5. Georgescu, B., Shimshoni, I., and Meer, P. (2003). Mean shift based clustering in high dimensions: A texture classification example. In IEEE International Conference on Computer Vision, pages 456-463. IEEE.
  6. Horner, M. J., Ries, L., Krapcho, M., Neyman, N., Aminou, R., Howlader, N., Altekruse, S. F., Feuer, E., Huang, L., Mariotto, A., Miller, B., Lewis, D., Eisner, M., Stinchcomb, D., and Edwards, B. (2009). Seer cancer seer cancer statistics review, 1975-2006. National Cancer Institute, Bethesda, MD, seer.cancer.gov.
  7. Jimenez-Alaniz, J. R., Medina-Banuelos, V., and YanezSuarez, O. (2006). Data-driven brain mri segmentation supported on edge confidence and a priori tissue information. IEEE Transaction on Medical Imaging, 25(1):74-83.
  8. Lee, J. (2007). Qualitya radiology imperative: Interpretation accuracy and pertinence. Journal of the American College of Radiology, 4:162-165.
  9. Mayer, A. and Greenspan, H. (2009). An adaptive meanshift framework for mri brain segmentation. IEEE Transaction on Medical Imaging, 28(8):1238-1250.
  10. Morton, M., Whaley, D., Brandt, K., and Amrami, K. (2006). Screening mammograms: Interpretation with computer-aided detectionprospective evaluation. Radiology, 239(2):375-383.
  11. Ojalaa, T., Nappia, J., and Nevalainena, O. (2001). Accurate segmentation of the breast region from digitized mammograms. Computerized medical imaging and graphics, 25:47-59.
  12. Sahba, F. and Venetsanopoulos, V. (2009). A new fuzzy approach to mammographic breast mass segmentation. In International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV2009), pages 852-858. Las Vegas.
  13. Tomasi, C. and Manduchi, R. (1998). Bilateral filtering for gray and color images. In International Conference on Computer Vision, pages 839-846.
Download


Paper Citation


in Harvard Style

Sahba F. and Venetsanopoulos A. (2010). BREAST MASS DETECTION USING BILATERAL FILTER AND MEAN SHIFT BASED CLUSTERING . In Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2010) ISBN 978-989-8425-19-5, pages 88-93. DOI: 10.5220/0002997600880093


in Bibtex Style

@conference{sigmap10,
author={Farhang Sahba and Anastasios Venetsanopoulos},
title={BREAST MASS DETECTION USING BILATERAL FILTER AND MEAN SHIFT BASED CLUSTERING},
booktitle={Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2010)},
year={2010},
pages={88-93},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002997600880093},
isbn={978-989-8425-19-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2010)
TI - BREAST MASS DETECTION USING BILATERAL FILTER AND MEAN SHIFT BASED CLUSTERING
SN - 978-989-8425-19-5
AU - Sahba F.
AU - Venetsanopoulos A.
PY - 2010
SP - 88
EP - 93
DO - 10.5220/0002997600880093