SEAMLESS SOFTWARE DEVELOPMENT FOR SYSTEMS BASED ON BAYESIAN NETWORKS - An Agricultural Pest Control System Example

Isabel María del Águila, José del Sagrado, Samuel Túnez, Francisco Javier Orellana

Abstract

This work presents a specific solution for the development of software systems that embed functionalities based and not based on knowledge, concerning the decision support process and the information management processes, respectively. When constructing a knowledge model, the processes to be performed are mainly focus on the description of the steps necessary to build it. Usually, all approaches concentrate on adapting the software engineering lifecycle to develop a knowledge model and forget the problem of integrating it in the final software system. We propose a process model that allows developing software systems that use a Bayesian network as knowledge model. In order to show how to apply our software process model, we have included a partial view of the development process of a knowledge-based system, related to decision making in an agricultural domain, specifically with pest control in a given crop.

References

  1. Acuña, S. T., López, M., Juristo, N., Moreno, A. M., 1999. Process model applicable to software engineering and knowledge engineering. Int. Jour. of Soft. Eng. and Knowl. Eng., 9 (5), 663-687.
  2. Águila, I. M., Cañadas, J., Bosch, A. Túnez, S. Marín, R, 2003. Knowledge model of therapy administration task applied to an agricultural domain. In KES 2003 7th Int. Conf., LNAI 2774, Springer, 1277-1283.
  3. Águila, I. M., Cañadas, J., Palma, J. Túnez, S. 2006. Towards a Methodology for Hybrid Systems Software Development. In SEKE 2006 18th Int. Conf. on Soft. Eng. and Knowl. Eng., 188-195.
  4. Alonso, F., Fuentes, J. L., Martìnez, L., Montes, C., 2000. An incremental solution for developing knowledgebased software: its application to an expert system for isokinetics interpretations. Experts Systems with Applications, 18 (3), 165-184.
  5. Cowell, R. G., Dawid, A., Lauritzen, S. L., Spiegelhalter, D. J., 1999. Probabilistic networks and experts systems, Springer-Verlag, New York.
  6. Gachet, A., Haettenschwiler, P., 2003. Developing Intelligent. Decision Support Systems: A Bipartite Approach. LNAI, 2774, 87-93.
  7. Jacobson, I., Christerson, M., Jonsson, P., Övergaard, G., 1992. Object-oriented Software Engineering: A Use Case Driven Approach. Addison-Wesley Professional.
  8. Jensen, F. V., Nielsen, T., 2007. Bayesian networks and decision graphs, Springer-Verlag, New York.
  9. Juristo, N., Acuña, S.T., 2002. Software Engineering and Knowledge Engineering. Expert Systems with Applications, 23 (4), Elsevier, 345-347.
  10. Kjaerulff, U. B., Madsen, A. L., 2008. Bayesian networks and influence diagrams: a guide to construction and analysis, Springer-Verlag, New York.
  11. Korb, K. B., Nicholson, A.E., 2003. Bayesian Artificial Intelligence, Chapman & Hall.
  12. Laskey, K. B., Mahoney, S. M., 2000. Network Engineering for Agile Belief Network Models, IEEE Trans. on Know. and Data Eng., 12 (4), 487-498.
  13. Neapolitan, R. E., 2004. Learning Bayesian Networks. Prentice Hall, Upper Saddle River, NJ.
  14. Pearl, J., 1988. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufman, San Mateo, CA.
  15. Rolland, C., Prakash, N., 2000. From conceptual modelling to requirements engineering. Annals of Software Engineering 10 (1-4), 151-176.
  16. Sagrado, J., Águila, I. M., 2007. Olive Fly Infestation Prediction Using Machine Learning Techniques. LNCS 4788, Springer, 229-238.
  17. Studer, R., Benjamins, R., Fensel, D., 1998. Knowledge engineering: Principles and methods. Data & Knowledge Engineering, 25 (1-2) .Elsevier, 161-197.
Download


Paper Citation


in Harvard Style

del Águila I., del Sagrado J., Túnez S. and Orellana F. (2010). SEAMLESS SOFTWARE DEVELOPMENT FOR SYSTEMS BASED ON BAYESIAN NETWORKS - An Agricultural Pest Control System Example . In Proceedings of the 5th International Conference on Software and Data Technologies - Volume 2: ICSOFT, ISBN 978-989-8425-23-2, pages 456-461. DOI: 10.5220/0003007904560461


in Bibtex Style

@conference{icsoft10,
author={Isabel María del Águila and José del Sagrado and Samuel Túnez and Francisco Javier Orellana},
title={SEAMLESS SOFTWARE DEVELOPMENT FOR SYSTEMS BASED ON BAYESIAN NETWORKS - An Agricultural Pest Control System Example},
booktitle={Proceedings of the 5th International Conference on Software and Data Technologies - Volume 2: ICSOFT,},
year={2010},
pages={456-461},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003007904560461},
isbn={978-989-8425-23-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Software and Data Technologies - Volume 2: ICSOFT,
TI - SEAMLESS SOFTWARE DEVELOPMENT FOR SYSTEMS BASED ON BAYESIAN NETWORKS - An Agricultural Pest Control System Example
SN - 978-989-8425-23-2
AU - del Águila I.
AU - del Sagrado J.
AU - Túnez S.
AU - Orellana F.
PY - 2010
SP - 456
EP - 461
DO - 10.5220/0003007904560461