Uta Christoph, Karl-Heinz Krempels, Janno von Stülpnagel, Christoph Terwelp


Mobile devices have obtained a significant role in our life providing a large variety of useful functionalities and features. It is desirable to have an automated adaptation of the behavior of a mobile device depending on a change of user context to fulfill expectations towards practical usefulness. To enable mobile devices to adapt their behavior automatically there is a need to determine the mobile user’s context. In this paper we introduce an integrated approach for the automatic detection of a user’s context. Therefore, we summarize and discuss existing approaches and technologies and describe a service architecture that takes into account information from the interaction of the mobile device with communication networks and positioning systems, from integrated sensors, and planned behavior of the user from e.g his calendar or activity list. Additionally it considers the social network of the user to derive further information about his context and finally it takes into account his customs through a behavior model.


  1. Berchtold, M. and Beigl, M. (2009). Increased robustness in context detection and reasoning using uncertainty measures - concept and application. In Proceedings of the European Conference on Ambient Intelligence (AmI'09), Salzburg, Austria. Springer.
  2. Brdiczka, O., Crowley, J. L., and Reignier, P. (2007). Learning situation models for providing context-aware services. In HCI (6), pages 23-32.
  3. da Silva, B. C., Basso, E. W., Perotto, F. S., C. Bazzan, A. L., and Engel, P. M. (2006). Improving reinforcement learning with context detection. In AAMAS 7806: Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems, pages 810-812, New York, NY, USA. ACM.
  4. Dey, A. K. (2001). Understanding and using context. Personal Ubiquitous Comput., 5(1):4-7.
  5. Henricksen, K. and Indulska, J. (2005). Developing context-aware pervasive computing applications: Models and approach. Pervasive and Mobile Computing, In, 2:2005.
  6. Jan, R.-H. and Lee, Y. R. (6-9 Oct. 2003). An Indoor Geolocation System for Wireless LANs. Parallel Processing Workshops, 2003. Proceedings. 2003 International Conference on, pages 29-34.
  7. Karantonis, D. M., Narayanan, M. R., Mathie, M., Lovell, N. H., and Celler, B. G. (2006). Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. Information Technology in Biomedicine, IEEE Transactions on, 10(1):156-167.
  8. Kern, N., Schiele, B., and Schmidt, A. (2003). Multi-sensor activity context detection for wearable computing. In In Proc. EUSAI, LNCS, pages 220-232.
  9. Kos, T., Grgic, M., and Sisul, G. (June 2006). Mobile User Positioning in GSM/UMTS Cellular Networks. Multimedia Signal Processing and Communications, 48th International Symposium ELMAR-2006 focused on, pages 185-188.
  10. Krempels, K.-H. and Krebs, M. (2008). Directory-less WLAN Indoor Positioning. In Proceedings of the IEEE International Symposium on Consumer Electronics 2008, Vilamoura Portugal.
  11. Kunczier, H. and Anegg, H. (5-8 Jan. 2004). Enhanced Cell ID Based Terminal Location for Urban Area Location Based Applications. Consumer Communications and Networking Conference, 2004. CCNC 2004. First IEEE, pages 595-599.
  12. Luley, P. M., Paletta, L., and Almer, A. (2005). Visual object detection from mobile phone imagery for context awareness. In MobileHCI 7805: Proceedings of the 7th international conference on Human computer interaction with mobile devices & services, pages 385-386, New York, NY, USA. ACM.
  13. Ma, L., Smith, D., and Milner, B. (2003). Environmental noise classification for context-aware applications. In Marík, V., Retschitzegger, W., and Stepánková, O., editors, DEXA, volume 2736 of Lecture Notes in Computer Science, pages 360-370. Springer.
  14. Ranganathan, A., Al-Muhtadi, J., and Campbell, R. H. (2004). Reasoning about uncertain contexts in pervasive computing environments. IEEE Pervasive Computing, 3(2):62-70.
  15. Sama, M., Rosenblum, D. S., Wang, Z., and Elbaum, S. (2008). Model-based fault detection in context-aware adaptive applications. In SIGSOFT 7808/FSE-16: Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering, pages 261-271, New York, NY, USA. ACM.
  16. Strang, T. and Linnhoff-Popien, C. (2004). A context modeling survey. In In: Workshop on Advanced Context Modelling, Reasoning and Management, UbiComp 2004 - The Sixth International Conference on Ubiquitous Computing, Nottingham/England.

Paper Citation

in Harvard Style

Christoph U., Krempels K., von Stülpnagel J. and Terwelp C. (2010). AUTOMATIC CONTEXT DETECTION OF A MOBILE USER . In Proceedings of the International Conference on Wireless Information Networks and Systems - Volume 1: WINSYS, (ICETE 2010) ISBN 978-989-8425-24-9, pages 189-194. DOI: 10.5220/0003030701890194

in Bibtex Style

author={Uta Christoph and Karl-Heinz Krempels and Janno von Stülpnagel and Christoph Terwelp},
booktitle={Proceedings of the International Conference on Wireless Information Networks and Systems - Volume 1: WINSYS, (ICETE 2010)},

in EndNote Style

JO - Proceedings of the International Conference on Wireless Information Networks and Systems - Volume 1: WINSYS, (ICETE 2010)
SN - 978-989-8425-24-9
AU - Christoph U.
AU - Krempels K.
AU - von Stülpnagel J.
AU - Terwelp C.
PY - 2010
SP - 189
EP - 194
DO - 10.5220/0003030701890194