THE CHEMNITZ HYBRID EVOLUTIONARY OPTIMIZATION SYSTEM

Ulf Nieländer

Abstract

This paper introduces the Chemnitz Hybrid Evolutionary Optimization System to the scientific community. CHEOPS is a non-standard, high-performance genetic algorithm framework allowing simple as well as advanced modes of operation. Universal genetic algorithms well-suited for solving both single- and multi-objective optimization problems are still a matter of serious research. The Omni Optimizer was a milestone in that research topic, but now it is dramatically outperformed by CHEOPS in single-objective optimization. The comparison should soon continue, because CHEOPS will be straightforwardly enhanced to solve multi-objective problems as well.

References

  1. Coelho, Guilherme P.; Von Zuben, Fernando J. (2006). Omni-aiNet: An Immune-Inspired Approach for Omni Optimization. In Proceedings of the Fifth International Conference on Artificial Immune Systems ICARIS'2006 (pp. 294 - 308). Berlin: Springer LNCS 4163.
  2. Coello Coello, Carlos A.; Lamont, Gary B.; Van Veldhuizen, David A. (2007). Evolutionary Algorithms for Solving Multi-Objective Problems (Second Edition). New York: Springer.
  3. Corne, David W.; Knowles, Joshua D. (2003). Some Multiobjective Optimizers are Better than Others. In Proceedings of the 2003 IEEE Congress on Evolutionary Computation CEC'2003 (pp. 2506 - 2512). Piscataway: IEEE Service Center.
  4. Deb, Kalyanmoy; Pratap, Amrit; Agarwal, Sameer; Meyarivan, Thirunavukkarasu (2000). A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II. Indian Institute of Technology Kanpur : KanGAL Report No. 200001.
  5. Deb, Kalyanmoy; Pratap, Amrit; Agarwal, Sameer; Meyarivan, Thirunavukkarasu (2002). A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6 (2), pp. 182 - 197.
  6. Deb, Kalyanmoy; Tiwari, Santosh (2005). Omni-Optimizer: A Procedure for Single and Multi-Objective Optimization. In Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization EMO'2005 (pp. 47 - 61). Berlin: Springer LNCS 3410.
  7. Deb, Kalyanmoy; Tiwari, Santosh (2008). Omni-Optimizer: A Generic Evolutionary Algorithm for Single and Multi-Objective Optimization. European Journal of Operational Research, 185 (3), 2008, 1062 - 1087.
  8. De Jong, Kenneth A. (2006). Evolutionary Computation - A Unified Approach. Cambridge : MIT Press.
  9. Goldberg, David E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Boston: Addison-Wesley.
  10. Hughes, Evan J. (2005). Evolutionary Many-Objective Optimisation: Many Once or One Many? In Proceedings of the 2005 IEEE Congress on Evolutionary Computation CEC'2005 (pp. 222 - 227). Piscataway: IEEE Service Center.
  11. Klanac, Alan; Jelovica, Jasmin (2007). A Concept of Omni-Optimization for Ship Structural Design. In Advancements in Marine Structures - Proceedings of the First International Conference on Marine Structures MARSTRUCT'2007 (pp. 473 - 481). London: Taylor & Francis.
  12. Nieländer, Ulf (2009). CHEOPS: Das Chemnitzer hybridevolutionäre Optimierungssystem. Chemnitz University of Technology: Eng. D. Thesis. http://archiv.tuchemnitz.de/pub/ 2009/0100/data/UlfNielaender.pdf Schwefel, Hans-P. (1975). Evolutionsstrategie und numerische Optimierung. Technical University of Berlin: Eng. D. Thesis.
  13. Schwefel, Hans-P. (1995). Evolution and Optimum Seeking. New York: Wiley.
  14. Wolpert, David H.; Macready, William G. (1995). No Free Lunch Theorems for Search. Santa Fe Institute: Working Paper 95-02-010.
Download


Paper Citation


in Harvard Style

Nieländer U. (2010). THE CHEMNITZ HYBRID EVOLUTIONARY OPTIMIZATION SYSTEM . In Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010) ISBN 978-989-8425-31-7, pages 311-320. DOI: 10.5220/0003059203110320


in Bibtex Style

@conference{icec10,
author={Ulf Nieländer},
title={THE CHEMNITZ HYBRID EVOLUTIONARY OPTIMIZATION SYSTEM },
booktitle={Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)},
year={2010},
pages={311-320},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003059203110320},
isbn={978-989-8425-31-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)
TI - THE CHEMNITZ HYBRID EVOLUTIONARY OPTIMIZATION SYSTEM
SN - 978-989-8425-31-7
AU - Nieländer U.
PY - 2010
SP - 311
EP - 320
DO - 10.5220/0003059203110320