HOW CAN NEURAL NETWORKS SPEED UP ECOLOGICAL REGIONALIZATION FRIENDLY? - Replacement of Field Studies by Satellite Data using RBFs

Manolo Cruz, Moisés Espínola, Rosa Ayala, Mercedes Peralta, José Antonio Torres

Abstract

The aim of this work is to present an application of the Radial Basis Functions Nets (RBFs) for simplifying and reducing the cost of ecological regionalization. The process speeds up and replaces the classic means of obtaining ecological variables through field studies. The radial basis function networks were applied to estimate field data remotely, using data captured by the Landsat satellite and correlating it with ecological variables in order to substitute for them in the regionalization process. This approach substantially reduces the time and cost of ecological regionalization, limiting field studies and automating the generation of the ecological variables. The technique could be applied without restriction to map vegetation in any other area for which satellite coverage exists.

References

  1. Loveland, T. R. and Merchant, J. M. (2004). Ecoregions and ecoregionalization: geographical and ecological perspectives. In Environmental Management 34. Springer New York.
  2. Moreira, J. (2000). Reconocimiento biofísico de espacios naturales protegidos. Parque natural Sierras Subbéticas. Junta de Andalucía, Sevilla, 1st edition.
  3. Naiman, R., Loranrich, D., Beechie, T., and Ralph, S. (1992). General principles of classification and the assessment of conservation potential in rivers. In River Conservation and Management. John Wiley and Sons.
  4. Pablo, C. D. (2000). Cartografía ecológica: conceptos y procedimientos para la representación espacial de ecosistemas. In Boletín de la Real Sociedad Espaola de Historia Natural. Real Sociedad Espaola de Historia Natural.
  5. Poggio, T. and Girosi, F. (1990). A theory of networks for approximation and learning. In Proceedings of the IEEE 78. Massachusetts Institute of Technology.
  6. Revenga, C. (2005). Developing indicators of ecosystem condition using geographic information systems and remote sensing. In Regional Environmental Change 5. Springer Berlin and Heidelberg.
  7. Richards, J. (1993). Remote sensing digital image analysis. An introduction. Springer-Verlag, Berlin, 2nd edition.
  8. Snelder, T., Leathwick, J., and Dey, K. (2007). A procedure for making optimal selection of input variables for multivariate environmental classifications. In Conservation Biology 21. National Institute of Water and Atmospheric Research.
  9. Snelder, T., Lehmann, A., Lamouroux, N., Leathwick, J., and Allenbach, K. (2010). Effect of classification procedure on the performance of numerically defined ecological regions. In Environmental Management 45. Springer New York.
Download


Paper Citation


in Harvard Style

Cruz M., Espínola M., Ayala R., Peralta M. and Torres J. (2010). HOW CAN NEURAL NETWORKS SPEED UP ECOLOGICAL REGIONALIZATION FRIENDLY? - Replacement of Field Studies by Satellite Data using RBFs . In Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010) ISBN 978-989-8425-32-4, pages 295-300. DOI: 10.5220/0003062402950300


in Bibtex Style

@conference{icnc10,
author={Manolo Cruz and Moisés Espínola and Rosa Ayala and Mercedes Peralta and José Antonio Torres},
title={HOW CAN NEURAL NETWORKS SPEED UP ECOLOGICAL REGIONALIZATION FRIENDLY? - Replacement of Field Studies by Satellite Data using RBFs},
booktitle={Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010)},
year={2010},
pages={295-300},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003062402950300},
isbn={978-989-8425-32-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010)
TI - HOW CAN NEURAL NETWORKS SPEED UP ECOLOGICAL REGIONALIZATION FRIENDLY? - Replacement of Field Studies by Satellite Data using RBFs
SN - 978-989-8425-32-4
AU - Cruz M.
AU - Espínola M.
AU - Ayala R.
AU - Peralta M.
AU - Torres J.
PY - 2010
SP - 295
EP - 300
DO - 10.5220/0003062402950300