RECOMMENDATION SYSTEM IN AN AUDIOVISUAL DELIVERY PLATFORM

Jose Mª Quinteiro-González, Ernestina Martel-Jordán, Pablo Hernández-Morera, Aaron López-Rodríguez, Leidia Martel-Monagas, Angelo Santana-del Pino

Abstract

One of the main tasks of the information services is to help users to find information that satisfies their preferences reducing their search effort. Recommendation systems filter information and only show the most preferred items. Ontologies are fundamental elements of the Semantic Web and have been exploited to build more accurate and personalized recommendations by inferencing missing user preferences. With catalogs changing continuously ontologies must be built autonomously without expert intervention. In this paper we present an audiovisual recommendation engine which uses an enhanced ontology filtering technique to recommend audiovisual content. Experimental results show that the improvements of the ontology filtering technique generate accurate recommendations.

References

  1. Herlocker, J., Konstan, J.A., Borchers, A, Riedl, J., 1999. An Algorithmic FrameWork for Performing Collaborative Filtering. In 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Berkeley, CA, pp. 230-237.
  2. Sarwar, B., Karypis, G., Konstan, J., Riedl, J. 2001. Itembased collaborative filtering recommendation algorithms. In 10th Conference on World Wide Web, Hong Kong, pp. 285-295.
  3. Vozalis, E., Margaritis, K.G. 2003. Analysis of Recommender Systems' Algorithms. In 6th Hellenic European Conference on Computer Mathematics and its Applications (HERCMA), Athens, Greece.
  4. OConnor, M., Herlocker, J. 1999. Clustering Items for Collaborative Filtering. In Proceedings of the ACM SIGIR Workshop on Recommender Systems: Algorithms and Evaluation, Berkeley, CA.
  5. Pazzani, M.J., Billsus, D. 2007. Content-Based Recommendation Systems. Lectures Notes in Computer Science, vol. 4321, Springer, pp. 325-341.
  6. Schickel-Zuber, V. 2007. Ontology Filtering. Thesis, Lausanne, EPFL.
  7. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B. 2001. Missing value estimation methods for DNA microarrays. Bioinformatics, vol. 17, n. 6, pp. 520- 525.
  8. Dataset Movielens. http://www.cs.umn.edu/ Research/GroupLens/data (visited March 23, 2010).
  9. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T. 2004. Evaluating Collaborative Filtering Recommender Systems. In ACM Transactions on Information Systems, vol. 22, n. 1, pp. 5-53.
Download


Paper Citation


in Harvard Style

Quinteiro-González J., Martel-Jordán E., Hernández-Morera P., López-Rodríguez A., Martel-Monagas L. and Santana-del Pino A. (2010). RECOMMENDATION SYSTEM IN AN AUDIOVISUAL DELIVERY PLATFORM . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2010) ISBN 978-989-8425-28-7, pages 379-382. DOI: 10.5220/0003063103790382


in Bibtex Style

@conference{kdir10,
author={Jose Mª Quinteiro-González and Ernestina Martel-Jordán and Pablo Hernández-Morera and Aaron López-Rodríguez and Leidia Martel-Monagas and Angelo Santana-del Pino},
title={RECOMMENDATION SYSTEM IN AN AUDIOVISUAL DELIVERY PLATFORM},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2010)},
year={2010},
pages={379-382},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003063103790382},
isbn={978-989-8425-28-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2010)
TI - RECOMMENDATION SYSTEM IN AN AUDIOVISUAL DELIVERY PLATFORM
SN - 978-989-8425-28-7
AU - Quinteiro-González J.
AU - Martel-Jordán E.
AU - Hernández-Morera P.
AU - López-Rodríguez A.
AU - Martel-Monagas L.
AU - Santana-del Pino A.
PY - 2010
SP - 379
EP - 382
DO - 10.5220/0003063103790382