APPLYING FUSION TECHNIQUES TO GRAPHICAL METHODS FOR KNOWLEDGE BASED PROCESSING OF PRODUCT USE INFORMATION

Susanne Dienst, Fazel Ansari, Alexander Holland, Madjid Fathi

Abstract

In this paper the processing and modelling of product use information raised by graphical methods on the basis of a praxis and application scenario. Product Lifecycle Management (PLM) ensures a uniform data basis for supporting numerous engineering and economic organisational processes along the entire product life cycle – from the first product idea to disposal or recycling of the product respectively. The Product Use Information (PUI) -e.g. condition monitoring data, failures or incidences of maintenance- of many instances of one product type is generated in the product use phase. The processing and modelling of PUI raised by graphical methods like Bayesian Networks. In accordance, the product use knowledge leads back to the product development phase and is used for discovering room for product improvements of the next product generation. Therefore the PUI of the different instances should be aggregated by applying fusion techniques to deduce/achieve generalized product improvements for a product type. As a result this paper reveals a novel approach of applying new feedback mechanism of PLM for product improvements.

References

  1. Holland, A.; Fathi, M.; Abramovici, M.; Neubach, M., 2008b. Enhancing a PLM System in Regard to the Integrated Management of Product Item and Product Type Data. In: Proceedings of the 2008 IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC 2008), 12.-15.10.2008, Singapore, ISBN: 1-4244-2384-2.
  2. Holland, A.; Fathi, M.; Abramovici, M.; Neubach, M., 2009. Knowledge-Based Feedback of Product Use Information into Product Development. In: International Conference on Enginieering Design (ICED'09), Stanford University, Stanford, CA, USA
  3. Salini S., Kenett R. S., 2009. Bayesian Networks of Customer Satisfaction Survey Data. In: Journal of Applied Statistics, Volume 36, Issue 11 November 2009, pages 1177 - 1189.
  4. Koski, T., Noble, J. M., 2009. Bayesian Networks - An Introduction. John Wiley & Sons, Ltd. The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom.
  5. Cowell R. G., Dawid P., Lauritzen S. L., Spiegelhalter D.J., 2007. Probabilistic Networks and Expert Systems. Springer, New York, USA.
  6. Jensen, F.V., Nielsen, T., 2007. Bayesian Networks and Decision Graphs. Statistics for Engineering and Information Science, Springer-Verlag, Berlin Heidelberg New York, 2nd Edition.
  7. Borgelt, C.; Kruse, R., 2002. Graphical Models. Methods for Data Analysis and Mining. John Wiley & Sons, West Sussex, United Kingdom.
  8. Holland, A.; Fathi, M.; Abramovici, M.; Neubach, M., 2008a. Competing Fusion for Bayesian Applications. In Proceedings of the 12th Intl. Conference on Information Processing and Management of Uncertainly in Knowledge-Based Systems (IPMU 2008), Malaga, Spain.
  9. Klein L.: Sensor and Data Fusion, 2004. A Tool for Information Assessment and Decision Making. SPIE - The Society of Photo-Optical Instrumentation Engineers, Beelingham, Washington.
  10. Clemen R.T., Winkler R. L, 1999. Combining Probability Distributions from Experts in Risk Analysis. In: Risk Analysis 19(2): 187-203.
  11. Yuan C., Druzdzel M., 2004. A Comparison on the Effectiveness of Two Heuristics for Importance Sampling. In: Second European Workshop on Probabilistic Graphical Models (PGM-04), Leiden, Netherlands.
  12. Cheng J., Druzdzel M., 2000. BN-AIS: An Adaptive Importance Sampling Algorithm for Evidential Reasoning in Large Bayesian Networks. In: Journal of Artificial Intelligence Research, 13:155-188.
  13. Henrion M., 1988. Propagating Uncertainty in Bayesian Networks by Probablistic Logic Sampling. In: Uncertainty in Artificial Intelligence 2, pages 149- 163, New York, N.Y. Elsevier Science Publishing Company, Inc..
  14. Fung R., Favero B. del, 1994. Backward Simulation in Bayesian Networks. In: 10th Annual Conference on Uncertainty in Artificial Intelligence (UAI-94), pages 227-234, San Mateo, CA. Morgan Kaufmann Publishers, Inc..
  15. Fung R., Chang K.-C., 1989. Weighing and Integrating Evidence for Stochastic Simulation in Bayesian Networks. In: M. Henrion, R.D. Shachter, L.N. Kanal, and J.F. Lemmer, editors, Uncertainty in Artificial Intelligence 5, pages 209-219, New York, N. Y. Elsevier Science Publishing Company, Inc..
  16. Decision Systems Laboratory DSL, GeNIe Guide, University of Pittsburgh, USA (2009) http://genie.sis.pitt.edu/ (last visit: 25.01.2010)
  17. Stone M., 1961. The Opinion Pool. The Annals of Mathematical Statistics, 32(4):1339-1342.
  18. Russell S. J., Norvig P., 2009. Artificial Intelligence: A Modern Approach. Prentice Hall, USA, 3rd edition.
  19. Lunze J., 1995. Künstliche Intelligenz für Ingenieure - Band 2: Technische Anwendungen. R. Oldenburger Verlag GmbH, München.
  20. Gaag L.C. van der, Renooij S., 2001: On the Evaluation of Probabilistic Networks. In: 8th Conference on Artificial Intelligence in Medicine. Lecture Notes in Computer Science, volume 2101, pages 457-461, Springer-Verlag, Berlin Heidelberg New York.
  21. Kullback S., 1959. Information Theory and Statistics. Wiley.
  22. Kuntze D., 2007. Untersuchung von ClusteringAlgorithmen für die Kullback-Leibler-Divergenz. Fakultät für Elektrotechnik, Informatik und Mathematik der Universität Paderborn.
  23. Neapolitan, R. E. 2003. Learning Bayesian Networks. Prentice Hall, USA.
Download


Paper Citation


in Harvard Style

Dienst S., Ansari F., Holland A. and Fathi M. (2010). APPLYING FUSION TECHNIQUES TO GRAPHICAL METHODS FOR KNOWLEDGE BASED PROCESSING OF PRODUCT USE INFORMATION . In Proceedings of the International Conference on Knowledge Management and Information Sharing - Volume 1: KMIS, (IC3K 2010) ISBN 978-989-8425-30-0, pages 136-142. DOI: 10.5220/0003065301360142


in Bibtex Style

@conference{kmis10,
author={Susanne Dienst and Fazel Ansari and Alexander Holland and Madjid Fathi},
title={APPLYING FUSION TECHNIQUES TO GRAPHICAL METHODS FOR KNOWLEDGE BASED PROCESSING OF PRODUCT USE INFORMATION},
booktitle={Proceedings of the International Conference on Knowledge Management and Information Sharing - Volume 1: KMIS, (IC3K 2010)},
year={2010},
pages={136-142},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003065301360142},
isbn={978-989-8425-30-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Management and Information Sharing - Volume 1: KMIS, (IC3K 2010)
TI - APPLYING FUSION TECHNIQUES TO GRAPHICAL METHODS FOR KNOWLEDGE BASED PROCESSING OF PRODUCT USE INFORMATION
SN - 978-989-8425-30-0
AU - Dienst S.
AU - Ansari F.
AU - Holland A.
AU - Fathi M.
PY - 2010
SP - 136
EP - 142
DO - 10.5220/0003065301360142