BROADER PERCEPTION FOR LOCAL COMMUNITY IDENTIFICATION

F. T. W. (Frank) Koopmans, Th. P. (Theo) van der Weide

Abstract

A local community identification algorithm can identify the network community of a given start node without knowledge of the entire network. Such algorithms only consider nodes within or directly adjacent to the local community. Therefore a local algorithm is more effective than an algorithm that partitions the entire network when only a small portion of a large network is of interest or when it is difficult to obtain information about the network (such as the world wide web). However, local algorithms cannot deliver the same quality as their global counterparts that use the entire network. We propose an improvement to local community identification algorithms that will decrease the gap between relevant network knowledge of global and local methods. Benchmarks on synthetic networks show our approach increases the quality of locally identified communities in general and a decrease of the dependency on specific source nodes.

References

  1. Albert, R. and Barabasi, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74:47-97.
  2. Bagrow, J. (2008). Evaluating local community methods in networks. J. Stat. Mech., page P05001.
  3. Chen, J., Zaane, O., and Goebel, R. (2009). Local community identification in social networks. ASONAM, pages 237-242.
  4. Clauset, A. (2005). Finding local community structure in networks. Phys. Rev. E, 72:026132.
  5. Danon, L., Duch, J., Diaz-Guilera, A., and Arenas, A. (2005). Comparing community structure identification. J. Stat. Mech., page P09008.
  6. Lancichinetti, A. and Fortunato, S. (2009). Community detection algorithms: a comparative analysis. Phys. Rev. E, 80:056117.
  7. Lancichinetti, A., Fortunato, S., and Kertesz, J. (2009). Detecting the overlapping and hierarchical community structure of complex networks. New Journal of Physics, 11:033015.
  8. Newman, M. (2003). The structure and function of complex networks. SIAM Review, 45:167-256.
  9. Palla, G., Barabasi, A.-L., and Vicsek, T. (2007). Quantifying social group evolution. Nature, 446:664-667.
  10. Schaeffer, S. (2005). Stochastic local clustering for massive graphs. Lecture Notes in Artificial Intelligence, 3518:354360.
  11. Strogatz, S. (2001). Exploring complex networks. Nature, 410:268-276.
Download


Paper Citation


in Harvard Style

Koopmans F. and van der Weide T. (2010). BROADER PERCEPTION FOR LOCAL COMMUNITY IDENTIFICATION . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2010) ISBN 978-989-8425-28-7, pages 400-403. DOI: 10.5220/0003069204000403


in Bibtex Style

@conference{kdir10,
author={F. T. W. (Frank) Koopmans and Th. P. (Theo) van der Weide},
title={BROADER PERCEPTION FOR LOCAL COMMUNITY IDENTIFICATION},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2010)},
year={2010},
pages={400-403},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003069204000403},
isbn={978-989-8425-28-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2010)
TI - BROADER PERCEPTION FOR LOCAL COMMUNITY IDENTIFICATION
SN - 978-989-8425-28-7
AU - Koopmans F.
AU - van der Weide T.
PY - 2010
SP - 400
EP - 403
DO - 10.5220/0003069204000403