NEURAL NETWORKS IN COMBUSTION SIMULATIONS

Lars Frank Große, Franz Joos

Abstract

The design process of commercially available combustion engines is often based on real experiments which is expensive concerning to fuel consumption, men power and environmental pollution. It is possible to replace complex experiments by computer simulations. The prediction of the velocity field, the mixing process of fuel and oxidiser and the temperature field is a wide range of research subjects. In case of turbulent flow simulations with combustion the chemical reactions and the coupling have to be calculated at the same time. With regard to computer time the used chemical reaction mechanism has a big influence on the performance of the whole simulation. Therefore optimisation procedures often improve the representation of the chemistry. The suggestion made in this paper, is the use of artificial neuronal networks for approximation of complex chemistry in turbulent combustion simulations.

References

  1. Barlow, R. S. and Frank, J. H. (1998). Proc. Combust. Inst. 27:1087-1095. The Combustion Institute. Pittsburgh.
  2. Barlow, R. S., Frank, J. H., A. N. Karpetis, and Chen, J.- Y. (2005). Piloted Methane/Air Jet Flames: Scalar Structure and Transport Effects, 143:433-449. Combustion Flame.
  3. Blasco J. A., Fueyo N., Dopazo C., Ballester J. (1998). Modelling the Temporal Evolution of a Reduced Combustion Chemical System With an Artificial Neural Network, 113:38-52. Combustion and Flame.
  4. Chen J.-Y., Blasco J. A., Fueyo N., Dopazo C. (2000). An economical strategy for storage of chemical kinetics: Fitting in situ adaptive tabulation with artificial neural networks, 28:115-121. Proceedings of the Combustion Institute, Baltimore: Port City Press.
  5. Harder, S., Joos, F. (2007). Modelling a Non-Premixed Industrial 18 MW Gas Turbine Combustor, GT2007- 27370 GTI/ASME. Turbo Expo, Montreal: Canada.
  6. Gregory P. Smith, David M. Golden, Michael Frenklach, Nigel W. Moriarty, Boris Eiteneer, Mikhail Goldenberg, C. Thomas Bowman, Ronald K. Hanson, Soonho Song, William C. Gardiner, Jr., Vitali V. Lissianski, and Zhiwei. (n.d.). GRI-Mech 3.0. from http://www.me.berkeley.edu/gri_mech/.
  7. Große, L., Joos, F. (2008). Usage of Artificial Neural Networks for Data Handling, GfKL 2008. German Classification Society, Hamburg: Germany.
  8. Große, L., Joos, F. (2009). The use of ANN for turbo engine applications, 17th European Symposium on Artificial Neural Networks, 207-212. ESANN 2009, Bruges: d-side publications.
  9. Große, L., Joos, F. (2010). Approximation of chemical reaction rates in turbulent combustion simulation , 18th European Symposium on Artificial Neural Networks, 195-200. ESANN 2010, Bruges: d-side publications.
  10. Igel, C., Husken, M. (2003). Empirical Evaluation of the Improved RPROP Learning Algorithms, 105-123. Neurocomputing 50C.
  11. Sandia/TUD Piloted/CH4/Air Jet Flames (2003). from http://www.sandia.gov/TNF/DataArch/FlameD.html.
  12. Zell, A. (1997). Simulation Neuronaler Netze. Oldenburg: Wissenschaftsverlag.
Download


Paper Citation


in Harvard Style

Große L. and Joos F. (2010). NEURAL NETWORKS IN COMBUSTION SIMULATIONS . In Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010) ISBN 978-989-8425-32-4, pages 406-410. DOI: 10.5220/0003073904060410


in Bibtex Style

@conference{icnc10,
author={Lars Frank Große and Franz Joos},
title={NEURAL NETWORKS IN COMBUSTION SIMULATIONS},
booktitle={Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010)},
year={2010},
pages={406-410},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003073904060410},
isbn={978-989-8425-32-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010)
TI - NEURAL NETWORKS IN COMBUSTION SIMULATIONS
SN - 978-989-8425-32-4
AU - Große L.
AU - Joos F.
PY - 2010
SP - 406
EP - 410
DO - 10.5220/0003073904060410