COEVOLUTIONARY ARCHITECTURES WITH STRAIGHT LINE PROGRAMS FOR SOLVING THE SYMBOLIC REGRESSION PROBLEM

Cruz Enrique Borges, César L. Alonso, José Luis Montaña, Marina de la Cruz Echeandia, Alfonso Ortega de la Puente

Abstract

To successfully apply evolutionary algorithms to the solution of increasingly complex problems we must develop effective techniques for evolving solutions in the form of interacting coadapted subcomponents. In this paper we present an architecture which involves cooperative coevolution of two subcomponents: a genetic program and an evolution strategy. As main difference with work previously done, our genetic program evolves straight line programs representing functional expressions, instead of tree structures. The evolution strategy searches for good values for the numerical terminal symbols used by those expressions. Experimentation has been performed over symbolic regression problem instances and the obtained results have been compared with those obtained by means of Genetic Programming strategies without coevolution. The results show that our coevolutionary architecture with straight line programs is capable to obtain better quality individuals than traditional genetic programming using the same amount of computational effort.

References

  1. Alonso, C. L., Montana, J. L., and Puente, J. (2008). Straight line programs: a new linear genetic programming approach. In Proc. 20th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pages 517-524.
  2. Axelrod, R. (1984). The evolution of cooperation. Basic Books, New York.
  3. Berkowitz, S. J. (1984). On comomputing the determinant in small parallel time using a small number of processors. In Information Processing Letters 18, pages 147-150.
  4. Burguisser, P., Clausen, M., and Shokrollahi, M. A. (1997). Algebraic Complexity Theory. Springer.
  5. Casillas, J., Cordon, O., Herrera, F., and Merelo, J. (2006). Cooperative coevolution for learning fuzzy rule-based systems. In Genetic and Evolutionary Computation Conference (GECCO 2006), pages 361-368.
  6. Giusti, M., Heintz, J., Morais, J., Morgenstern, J. E., and Pardo, L. M. (1997). Straight line programs in geometric elimination theory. In Journal of Pure and Applied Algebra 124, pages 121-146.
  7. Heintz, J., Roy, M. F., and Solerno, P. (1990). Sur la complexite du principe de tarski-seidenberg. In Bulletin de la Societe Mathematique de France, 118, pages 101- 126.
  8. Hillis, D. (1991). Co-evolving parasites improve simulated evolution as an optimization procedure. In Artificial Life II, SFI Studies in the Sciences Complexity 10, pages 313-324.
  9. Keijzer, M. (2003). Improving symbolic regression with interval arithmetic and linear scaling. In Procceedings of EuroGP 2003, pages 71-83.
  10. Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge, MA.
  11. Maynard, J. (1982). Evolution and the theory of games. Cambridge University Press, Cambridge.
  12. Michalewicz, Z., Logan, T., and Swaminathan, S. (1994). Evolutionary operators for continuous convex parameter spaces. In Proceedings of the 3rd Annual Conference on Evolutionary Programming, pages 84-97.
  13. Rosin, C. and Belew, R. (1996). New methods for competetive coevolution. In Evolutionary Computation 5 (1), pages 1-29.
  14. Ryan, C. and Keijzer, M. (2003). An analysis of diversity of constants of genetic programming. In Procceedings of EuroGP 2003, pages 409-418.
  15. Schwefel, H. P. (1981). Numerical Optimization of Computer Models. John Wiley and Sons, New-York.
  16. Topchy, A. and Punch, W. F. (2001). Faster genetic programming based on local gradient search of numeric leaf values. In Proceedings of the 2001 conference on Genetic and Evolutionary Computation (GECCO), pages 155-162.
  17. Vanneschi, L., Mauri, G., Valsecchi, A., and Cagnoni, S. (2001). Heterogeneous cooperative coevolution: Strategies of integration between GP and GA. In Proc. of the Fifth Conference on Artificial Evolution (AE 2001), pages 311-322.
  18. Wiegand, R. P., Liles, W. C., and Jong, K. A. D. (2001). An empirical analysis of collaboration methods in cooperative coevolutionary algorithms. In Proceedings of the 2001 conference on Genetic and Evolutionary Computation (GECCO), pages 1235-1242.
Download


Paper Citation


in Bibtex Style

@conference{icec10,
author={Cruz Enrique Borges and César L. Alonso and José Luis Montaña and Marina de la Cruz Echeandia and Alfonso Ortega de la Puente},
title={COEVOLUTIONARY ARCHITECTURES WITH STRAIGHT LINE PROGRAMS FOR SOLVING THE SYMBOLIC REGRESSION PROBLEM},
booktitle={Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)},
year={2010},
pages={41-50},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003075100410050},
isbn={978-989-8425-31-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)
TI - COEVOLUTIONARY ARCHITECTURES WITH STRAIGHT LINE PROGRAMS FOR SOLVING THE SYMBOLIC REGRESSION PROBLEM
SN - 978-989-8425-31-7
AU - Enrique Borges C.
AU - L. Alonso C.
AU - Luis Montaña J.
AU - de la Cruz Echeandia M.
AU - Ortega de la Puente A.
PY - 2010
SP - 41
EP - 50
DO - 10.5220/0003075100410050


in Harvard Style

Enrique Borges C., L. Alonso C., Luis Montaña J., de la Cruz Echeandia M. and Ortega de la Puente A. (2010). COEVOLUTIONARY ARCHITECTURES WITH STRAIGHT LINE PROGRAMS FOR SOLVING THE SYMBOLIC REGRESSION PROBLEM . In Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010) ISBN 978-989-8425-31-7, pages 41-50. DOI: 10.5220/0003075100410050