HYBRID POPULATION-BASED INCREMENTAL LEARNING TO ASSIGN TERMINALS TO CONCENTRATORS

Eugénia Moreira Bernardino, Anabela Moreira Bernardino, Juan Manuel Sánchez-Pérez, Juan Antonio Gómez-Pulido, Miguel Angel Vega-Rodríguez

Abstract

In the last decade, we have seen a significant growth in communication networks. In centralised communication networks, a central computer serves several terminals or workstations. In large networks, some concentrators are used to increase the network efficiency. A collection of terminals is connected to a concentrator and each concentrator is connected to the central computer. In this paper we propose a Hybrid Population-based Incremental Learning (HPBIL) to assign terminals to concentrators. We use this algorithm to determine the minimum cost to form a network by connecting a given collection of terminals to a given collection of concentrators. We show that HPBIL is able to achieve good solutions, improving the results obtained by previous approaches.

References

  1. Abuali, F., Schoenefeld, D., Wainwright, R., 1994. Terminal assignment in a Communications Network Using Genetic Algorithms. In Proc. of the 22nd Annual ACM Computer Science Conference, pp. 74- 81. ACM Press.
  2. Baluja, S., 1994. Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical report CMU-CS-95-163, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
  3. Baluja, S., 1996. Genetic Algorithms and Explicit Search Statistics. In Advances in Neural Information Processing Systems, pp. 319-325. MIT Press.
  4. Baluja, S., 1997. Prototyping Intelligent Vehicle Modules Using Evolutionary Algorithms. In Evolutionary Algorithms in Engineering Applications, pp. 24 1-257. Springer-Verlag.
  5. Baluja, S., Caruana, R.. 1995. Removing the genetics form the standard genetic algorithm. In Proceeding of the International Conference on Machine Learning, pp. 38-46.
  6. Bernardino, E., Bernardino, A., Sánchez-Pérez, J., VegaRodríguez, M., Gómez-Pulido, J., 2008a. Tabu Search vs Hybrid Genetic Algorithm to solve the terminal assignment problem. In IADIS International Conference Applied Computing, pp. 404-409. IADIS Press.
  7. Bernardino, E., Bernardino, A., Sánchez-Pérez, J., VegaRodríguez, M., Gómez-Pulido, J., 2008b. Solving the Terminal Assignment Problem Using a Local Search Genetic Algorithm. In International Symposium on Distributed Computing and Artificial Intelligence, pp. 225-234. Springer.
  8. Bernardino, E., Bernardino, A., Sánchez-Pérez, J., VegaRodríguez, M., Gómez-Pulido, J., 2009a. A Hybrid Differential Evolution Algorithm for solving the Terminal assignment problem. In International Symposium on Distributed Computing and Artificial Intelligence 2009, pp. 178-185. Springer.
  9. Bernardino, E., Bernardino, A., Sánchez-Pérez, J., VegaRodríguez, M., Gómez-Pulido, J., 2009b. A Hybrid Ant Colony Optimization Algorithm for Solving the Terminal Assignment Problem. In International Conference on Evolutionary Computation, 2009, pp. 144-151. Springer.
  10. Bernardino, E., Bernardino, A., Sánchez-Pérez, J., VegaRodríguez, M., Gómez-Pulido, J., 2010a A Hybrid Differential Evolution Algorithm with a Multiple Strategy for Solving the Terminal Assignment Problem. In 6th Hellenic Conference on Artificial Intelligence 2010, pp. 303-308. Springer.
  11. Bernardino, E., Bernardino, A., Sánchez-Pérez, J., VegaRodríguez, M., Gómez-Pulido, J., 2010b. A Hybrid Scatter Search Algorithm to assign terminals to concentrators. In Proc. of the 2010 IEEE Congress on Evolutionary Computation, pp. 1-8. IEEE Computer Society. Los Alamitos, CA, USA.
  12. He, Z., Wei, C., Jin, B., Pei, W., Yang, L., 1999. A new population-based incremental learning method for the traveling salesman problem. In Proc. of the 1999 Congress on Evolutionary Computation, vol. 2, pp. 1152-1156. IEEE.
  13. Khuri, S., Chiu, T., 1997. Heuristic Algorithms for the Terminal Assignment Problem. In Proc. of the ACM Symposium on Applied Computing, pp. 247-251. ACM Press.
  14. Salcedo-Sanz, S., Yao, X., 2004. A hybrid Hopfield network-genetic algorithm approach for the terminal assignment problem. IEEE Transaction On Systems, Man and Cybernetics, 2343-2353.
  15. Xu, Y., Salcedo-Sanz, S., Yao, X. 2004 Non-standard cost terminal assignment problems using tabu search approach. In IEEE Conference in Evolutionary Computation, vol. 2, pp. 2302-2306.
  16. Yao, X., Wang, F., Padmanabhan, K., Salcedo-Sanz, S., 2005. Hybrid evolutionary approaches to terminal assignment in communications networks. In Recent Advances in Memetic Algorithms and related search technologies, vol. 166, pp. 129-159. Springer, Berlin.
Download


Paper Citation


in Harvard Style

Moreira Bernardino E., Moreira Bernardino A., Sánchez-Pérez J., Gómez-Pulido J. and Vega-Rodríguez M. (2010). HYBRID POPULATION-BASED INCREMENTAL LEARNING TO ASSIGN TERMINALS TO CONCENTRATORS . In Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010) ISBN 978-989-8425-31-7, pages 182-189. DOI: 10.5220/0003076301820189


in Bibtex Style

@conference{icec10,
author={Eugénia Moreira Bernardino and Anabela Moreira Bernardino and Juan Manuel Sánchez-Pérez and Juan Antonio Gómez-Pulido and Miguel Angel Vega-Rodríguez},
title={HYBRID POPULATION-BASED INCREMENTAL LEARNING TO ASSIGN TERMINALS TO CONCENTRATORS },
booktitle={Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)},
year={2010},
pages={182-189},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003076301820189},
isbn={978-989-8425-31-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)
TI - HYBRID POPULATION-BASED INCREMENTAL LEARNING TO ASSIGN TERMINALS TO CONCENTRATORS
SN - 978-989-8425-31-7
AU - Moreira Bernardino E.
AU - Moreira Bernardino A.
AU - Sánchez-Pérez J.
AU - Gómez-Pulido J.
AU - Vega-Rodríguez M.
PY - 2010
SP - 182
EP - 189
DO - 10.5220/0003076301820189