James Glenn


Can’t Stop is a jeopardy stochastic game played on an octagonal game board with four six-sided dice. Previous work generalized a well-known heuristic strategy for the solitaire game and attempted to optimize the parameters of the generalized strategy using a genetic algorithm (GA). There were two challenges in that optimization process: first, the stochastic nature of the game results in a very noisy fitness function; second, the fitness function is computationally expensive. In this work we continue the optimization process for the heuristic strategy by optimizing the GA: for a fixed number of fitness function evaluations, we investigate the effects of varying the GA parameters (in particular the population size and number of generations), which in turn affect the number of samples per individual and thus noise as well. We also examine different sampling schedules; our schedules are unique in that selecting the final champion is considered a schedulable phase. The GA parameters are first optimized on an easy-to-compute test function. The resulting GA parameters are effective on the original problem and as a result we obtain an improved heuristic strategy for Can’t Stop.


  1. Aizawa, A. and Wah, B. (1993). Scheduling of genetic algorithms in a noisy environment. In Forrest, S., editor, Proc. 5th Intl. Conf. on Genetic Algorithms, pages 48- 55, San Mateo, CA. Morgan Kaufman.
  2. Arnold, D. and Beyer, H.-G. (2003). A comparison of evolution strategies with other direct search methods in the presense of noise. Comp. Opt. and App., 24:135- 159.
  3. Bellman, R. E. (1957). Dynamic Programming. Princeton University Press, Princeton, NJ, USA.
  4. De Jong, K. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, University of Michigan.
  5. Fang, H. (2005a). The nature of retrograde analysis for Chinese chess, part I. ICGA Journal, 28(2):91-105.
  6. Fang, H. (2005b). The nature of retrograde analysis for Chinese chess, part II. ICGA Journal, 28(3):140-152.
  7. Fitzpatrick, J. and Grefenstette, J. (1988). Genetic algorithms in noisy environments. Machine Learning, 3:101-120.
  8. Gasser, R. (1996). Solving nine men's Morris. Computational Intelligence, 12:24-41.
  9. Glenn, J. (2006). An optimal strategy for Yahtzee. Technical Report CS-TR-0002, Loyola College in Maryland, 4501 N. Charles St, Baltimore MD 21210, USA.
  10. Glenn, J. (2007). Computer strategies for solitaire Yahtzee. In IEEE Symp. on Comp. Intell. and Games, pages 132-139.
  11. Glenn, J. and Aloi, C. (2009). A generalized heiristic for can't stop. In Proc. 22nd FLAIRS Conf., pages 421- 426. AAAI Press.
  12. Glenn, J., Fang, H., and Kruskal, C. P. (2008). Retrograde approximate algorithms for some stochastic games. ICGA Journal, 31(2):77-96.
  13. Irving, G., Donkers, J., and Uiterwijk, J. (2000). Solving Kalah. ICGA Journal, 23(3):139-147.
  14. Jin, Y. and Branke, J. (2005). Evolutionary optimization in uncertain environments - a survey. Evolutionary Computation, IEEE Transactions on, 9(3):303-317.
  15. Keller, M. (1986). Can't stop? Try the rule of 28. World Game Review, 6. See also http://www.solitairelaboratory.com/cantstop.html last visited Nov. 22, 2008.
  16. Lake, R., Schaeffer, J., and Lu, P. (1994). Solving large retrograde analysis problems using a network of workstations. In van den Herik, H., Herschberg, I. S., and Uiterwijk, J., editors, Advances in Computer Games VII, pages 135-162. University of Limburg, Maastricht. the Netherlands.
  17. Mühlenbein, H. and Schlierkamp-Voosen, D. (1993). Predictive models for the breeder genetic algorithm. Evolutionary Computation, 1:25-49.
  18. Mühlenbein, H., Schornisch, M., and Born, J. (1991). The parallel genetic algorithm as function optimizer. Parallel Computing, 17:619-632.
  19. Neller, T. and Presser, C. (2004). Optimal play of the dice game Pig. The UMAP Journal, 25(1):25-47.
  20. Neller, T. and Presser, C. (2006). Pigtail: A Pig addendum. The UMAP Journal, 26(4):443-458.
  21. Romein, J. W. and Bal, H. E. (2003). Solving the game of Awari using parallel retrograde analysis. IEEE Computer Society, 36(10):26-33.
  22. Sackson, S. (2007). Can't Stop. Face 2 Face Games, Providence, RI, USA. Boxed game set.
  23. Schaeffer, J., Björnsson, Y., Burch, N., Lake, R., Lu, P., and Sutphen, S. (2004). Building the checkers 10-piece endgame databases. In van den Herik, H., Iida, H., and Heinz, E., editors, Advances in Computer Games 10. Many Games, Many Challenges, pages 193-210. Kluwer Academic Publishers, Boston, USA.
  24. Ströhlein, T. (1970). Untersuchungen über kombinatorische Spiele. PhD thesis, Fakultät für Allegemeine Wissenschaften der Technischen Hochschule München, Munich.
  25. Thompson, K. (1986). Retrograde analysis of certain endgames. ICCA Journal, 9(3):131-139.
  26. Thompson, K. (1996). 6-piece endgames. ICCA Journal, 19(4):215-226.
  27. T örn, A. and Zilinskas, A. (1989). Global Optimization. Springer Verlag, New York.
  28. Woodward, P. (2003). Yahtzee: The solution. Chance, 16(1):18-22.
  29. Wu, R. and Beal, D. (2001). Fast, memory-efficient retrograde algorithms. ICGA Journal, 24(3):147-159.

Paper Citation

in Harvard Style

Glenn J. (2010). OPTIMIZING GENETIC ALGORITHM PARAMETERS FOR A STOCHASTIC GAME . In Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010) ISBN 978-989-8425-31-7, pages 199-206. DOI: 10.5220/0003079101990206

in Bibtex Style

author={James Glenn},
booktitle={Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)},

in EndNote Style

JO - Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)
SN - 978-989-8425-31-7
AU - Glenn J.
PY - 2010
SP - 199
EP - 206
DO - 10.5220/0003079101990206